Geometria Simplética 2021, Lista 9

Prof. H. Bursztyn

Entrega dia 26/11

Problem 1: Let L(t) and A(t) be smooth families of matrices in $M_n(\mathbb{R})$ such that the equation

$$L'(t) = [A(t), L(t)] = (AL - LA)(t),$$
(1)

called Lax's equation, holds.

(a) Let U(t) be the solution to the equation

$$U'(t) = A(t)U(t), \quad U(0) = \text{Id.}$$

Using ODE theory, verify that the solution to this equation exists and is unique, and U(t) is invertible. If $V = U^{-1}$, show that V(t) satisfies V'(t) = -V(t)A(t).

(b) Show that (V(t)L(t)U(t))' = 0, and conclude that L(t) (solution to (1)) is given by $L(t) = U(t)L(0)U(t)^{-1}$.

It follows that L follows an "isospectral evolution", so functions of L that are invariant by conjugation are conserved quantities, for example $tr(L^k)$, k = 1, ..., n

We will see below how to use Lax's equation to find conserved quantities for hamiltonian systems.

Problem 2: We consider the simplest example: the harmonic oscillator. The phase space is $\mathbb{R}^2 = \{(q, p)\}$, with canonical form $dq \wedge dp$, and hamiltonian $H(q, p) = \frac{1}{2}(\lambda^2 q^2 + p^2)$. Consider the matrices

$$L = \begin{pmatrix} p & \lambda q \\ \lambda q & -p \end{pmatrix}, \quad A = \begin{pmatrix} 0 & -\lambda/2 \\ \lambda/2 & 0 \end{pmatrix}$$

- (a) Show that in this example Hamilton's equations are equivalent to Lax's equation and $H = \frac{1}{4} \text{Tr}(L^2)$.
- (b) Consider $\mathcal{U} = \mathbb{R}^2 \{0\}$, let θ be the usual angle coordinate on \mathcal{U} . Show that $(H, \theta) : \mathcal{U} \to \mathbb{R}_+ \times S^1$ is a diffeomorphism that is not symplectic (equipping $\mathbb{R}_+ \times S^1$ with the canonical symplectic form, as we did in class for the model $B \times \mathbb{T}^n$).
- (c) Find action-angle coordinates on \mathcal{U} .

The next two problems illustrate important integrable systems in \mathbb{R}^{2n} ; both can be described by Lax's equation. For simplicity we assume that n = 2.

Problem 3: Consider on $T^*\mathbb{R}^2 = \mathbb{R}^4$, with coordinates (q_1, q_2, p_1, p_2) , the hamiltonian

$$H(q,p) := \frac{1}{2}(p_1^2 + p_2^2) + e^{2(q_1 - q_2)}$$

- (a) Find the corresponding hamiltonian system (this is called the *Toda lattice* and models a linear molecule with 2 atoms subject to an exponential interaction).
- (b) Show that $f = p_1 + p_2$ is a conserved quantity $(\{H, f\}=0)$.
- (c) Are H and f independent?

Now consider the 2×2 matrices L, A given by

$$L_{11} = p_1, \ L_{22} = p_2, \ L_{12} = L_{21} = e^{q_1 - q_2}, \ A_{11} = A_{22} = 0, \ A_{12} = -A_{21} = -e^{q_1 - q_2}.$$

Show that solving the hamiltonian system is equivalent to solving Lax's equation (1). Note that f = tr(L) and $H = \frac{1}{2}tr(L^2)$.

Problem 4: Consider the hamiltonian (defined for $q_1 \neq q_2$)

$$H(q,p) := \frac{1}{2}(p_1^2 + p_2^2) + \frac{1}{(q_1 - q_2)^2}$$

Verify that the corresponding system, called *Calogero-Moser*, is

$$\dot{q}_j = p_j, \quad \dot{p}_j = 2(q_j - q_k)^{-3}, \quad k \neq j, \quad j = 1, 2.$$
 (2)

Consider 2×2 matrices L and A given by

$$L_{jj} = p_j, \ L_{kj} = i(q_k - q_j)^{-1}, \ A_{jj} = -i(q_j - q_k)^{-2}, \ A_{jk} = i(q_j - q_k)^{-2}.$$

for j = 1, 2 and $k \neq j$ (here $i = \sqrt{-1}$). As in the previous problem, show the equivalence of solving (2) and (1). Find another conserved quantity for this system (other than H).