Geometria Simplética 2021, Lista 8

Prof. H. Bursztyn

Entrega dia 15/11

Problem 1:

(a) Consider hamiltonian actions of G on two symplectic manifolds $\left(M_{i}, \omega_{i}\right), i=1,2$, with moment maps $\mu_{i}: M_{i} \rightarrow \mathfrak{g}^{*}, i=1,2$. Show that the diagonal action of G on $M_{1} \times M_{2}\left(g\left(x_{1}, x_{2}\right) \mapsto\left(g x_{1}, g x_{2}\right)\right)$ is hamiltonian, with moment map $\mu: M_{1} \times M_{2} \rightarrow$ $\mathfrak{g}^{*}, \mu\left(x_{1}, x_{2}\right)=\mu_{1}\left(x_{1}\right)+\mu_{2}\left(x_{2}\right)$.
(b) Suppose that $G \curvearrowright M$ is a hamiltonian action with moment map μ, and let $H \subseteq G$ be a Lie subgroup. Show that the restriction of the action to $H, H \curvearrowright M$, is hamiltonian with moment map $\iota^{*} \circ \mu$, where $\iota: \mathfrak{h} \rightarrow \mathfrak{g}$ is the inclusion.

Problem 2: Consider the group $S O(3)$ acting on $T^{*} \mathbb{R}^{3}$ by the cotangent lift of the usual action of $S O(3)$ on \mathbb{R}^{3}.
a) For $u \in \mathfrak{s o}(3)$, compute the corresponding infinitesimal generator $u_{T^{*} \mathbb{R}^{3}} \in \mathfrak{X}\left(T^{*} \mathbb{R}^{3}\right)$.
b) Identify $\mathfrak{s o}(3)$ with \mathbb{R}^{3} (as in Lista 6). Show that, with this identification, we have $u_{T^{*} \mathbb{R}^{3}}(q, p)=(u \times q, u \times p)$.
c) Identifying $\mathfrak{s o}(3)^{*} \cong\left(\mathbb{R}^{3}\right)^{*} \cong \mathbb{R}^{3}$ using the usual inner product, show that the moment map for the action of $S O(3)$ on $T^{*} \mathbb{R}^{3}$ is $\mu(q, p)=q \times p$. Conclude (by Noether's theorem) that if $V \in C^{\infty}\left(\mathbb{R}^{3}\right)$ is $S O(3)$-invariant, then the flow of the hamiltonian $H(q, p)=\frac{p^{2}}{2 m}+V(q)$ preserves "angular momentum" $q \times p$.

Problem 3: Consider $G=\mathbb{R}^{2}$ acting on \mathbb{R}^{2} by $g \cdot(x, y)=(x+a, y+b)$, where $g=(a, b)$. Show that this action is weakly hamiltonian (i.e., there exists $\mu: M \rightarrow \mathfrak{g}^{*}$ such that $\left.i_{u_{M}} \omega=d\langle\mu, u\rangle\right)$ but it does not admit an equivariant moment map.

Problem 4: Consider a weakly hamiltonian G-action on (M, ω), with moment map $\mu: M \rightarrow \mathfrak{g}^{*}$ (i.e., not necessarily equivariant). We now see two independent cases in which we can always find a moment map which is equivariant.
a) For each $g \in G$, define $g \cdot \mu:=\left(\mathrm{Ad}^{*}\right)_{g}\left(\mu \circ g^{-1}\right)$ (in such a way that μ is equivariant if and only if $g \cdot \mu=\mu$ for all g). Show that $g \cdot \mu$ is also a moment map (not necessarily equivariant) for the action.
b) Suppose that G is compact. In this case, we can take a left-invariant volume form Λ on G (i.e., $L_{g}^{*} \Lambda=\Lambda$) satisfying $\int_{G} \Lambda=1$ (why?). Consider the "average" $\bar{\mu}:=\int_{G} g \cdot \mu$ (integral with respect to Λ). Show that $\bar{\mu}$ is an equivariant moment map.
c) Suppose that M is compact and connected. Then there is an equivariant moment map.
(Hint: Note that we can take μ normalized so that $\int_{M} \mu=0$ (integral with respect to the Liouville volume Λ_{ω}). Verify, using that M is connected, that this normalization uniquely characterizes the moment map. Conclude that μ is equivariant by showing that $\int_{M} g \cdot \mu=0$, for all $g \in G$.)

Problem 5: Consider the torus \mathbb{T}^{n} acting on \mathbb{C}^{n} (the canonical symplectic forms reads $\left.\frac{i}{2} \sum_{j} d z_{j} \wedge d \bar{z}_{j}\right)$ by:

$$
\left(e^{i \theta_{1}}, \ldots, e^{i \theta_{n}}\right) \cdot\left(z_{1}, \ldots, z_{n}\right)=\left(e^{i k_{1} \theta_{1}} z_{1}, \ldots, e^{i k_{n} \theta_{n}} z_{n}\right)
$$

where $k_{1}, \ldots, k_{n} \in \mathbb{Z}$ are fixed.
a) Show that this action is hamiltonian, with moment map $\mu: \mathbb{C}^{n} \rightarrow\left(\mathfrak{t}^{n}\right)^{*} \cong \mathbb{R}^{n}$,

$$
\mu\left(z_{1}, \ldots, z_{n}\right)=-\frac{1}{2}\left(k_{1}\left|z_{1}\right|^{2}, \ldots, k_{n}\left|z_{n}\right|^{2}\right)
$$

b) Conclude (see Problem 1) that the action of S^{1} on \mathbb{C}^{n} given by multiplication by $e^{i \theta}$ on each coordinate is hamiltonian with moment map $\mu: \mathbb{C}^{n} \rightarrow \mathbb{R}, \mu(z)=-\frac{1}{2}|z|^{2}$.

Problem 6: Consider the usual action of $U(n)$ on \mathbb{C}^{n}.
a) Writing elements $U \in U(n)$ in the form $A+i B$, check that the action of U on $\mathbb{R}^{2 n}$ $\left(\cong \mathbb{C}^{n}\right)$ is given by the linear symplectomorphism

$$
\left(\begin{array}{cc}
A & -B \\
B & A
\end{array}\right)
$$

The Lie algebra $\mathfrak{u}(n)$ consists of anti-hermitian matrices $u=\xi+i \eta$, with $\xi=-\xi^{t} \in$ $M_{n}(\mathbb{R}), \eta=\eta^{t} \in M_{n}(\mathbb{R})$. Show that the infinitesimal generator of $u \in \mathfrak{u}(n)$ is hamiltonian with respect to

$$
\mu^{u}(z)=-\frac{1}{2}\langle x, \eta x\rangle+\langle y, \xi x\rangle-\frac{1}{2}\langle y, \eta y\rangle,
$$

where $z=x+i y, x, y \in \mathbb{R}^{n}$, and $\langle\cdot, \cdot\rangle$ is the usual inner product.
b) Show that $\mu^{u}(z)=\frac{1}{2} i z^{*} u z=\frac{1}{2} i \operatorname{tr}\left(z z^{*} u\right)$.
c) Identify $\mathfrak{u}(n)$ with $\mathfrak{u}(n)^{*}$ through the inner product $(A, B)=\operatorname{tr}\left(A^{*} B\right)$. Let $\mu: \mathbb{C}^{n} \rightarrow$ $\mathfrak{u}(n)$,

$$
\mu(z)=\frac{i}{2} z z^{*} .
$$

Here $z \in \mathbb{C}^{n}$ is viewed as a $n \times 1$ matrix. Show that μ is equivariant (recall what the adjoint and coadjoint actions are) and conclude that μ is a moment map for the $U(n)$-action.
d) Consider the action of $U(k)$ on the space $\mathbb{C}^{k \times n}$ (with the canonical symplectic form), viewed as $k \times n$ matrices. Identify $\mathfrak{u}(k)$ with its dual as in item c). Show that a moment map for this action is

$$
\mu(A)=\frac{i}{2} A A^{*}-\frac{i \mathrm{Id}}{2} .
$$

(Hint: combine problem 1(a) and the previous items, the constant factor is just for convenience.)
Verify that $\mu^{-1}(0) / U(k)$ is naturally identified with the Grassmannian of k-planes in \mathbb{C}^{n} (which hence acquires a symplectic form from symplectic reduction).

Problem 7: Consider a hamiltonian action $\psi: G \curvearrowright(M, \omega)$, with moment map $\mu: M \rightarrow$ \mathfrak{g}^{*}. Consider the co-moment map $\hat{\mu}: \mathfrak{g} \rightarrow C^{\infty}(M), \hat{\mu}(u)=\langle\mu, u\rangle$, and consider $C^{\infty}(M)$ equipped with the Poisson bracket.
(a) We saw in class that the equivariance of μ implies that $\hat{\mu}$ is an anti-homomorphism of Lie algebras. Show that the converse holds when G is connected.
(b) Show that for G connected, the fact that $\psi_{g}^{*} \omega=\omega$ follows from the condition $i_{u_{M}} \omega=d\langle\mu, u\rangle$.

Problem 8: Let G be a Lie group and consider the action multiplication on the left: $G \times G \rightarrow G,(g, a) \mapsto L_{g}(a)=g . a$. Take the G-action on $T^{*} G$ by cotangent lift, $\psi: G \times T^{*} G \rightarrow T^{*} G$.
(a) Consider the action of G_{ξ} on G by left multiplication, and the map $q: G \rightarrow \mathcal{O}_{\xi}$, $g \mapsto \operatorname{Ad}_{g^{-1}}^{*} \xi$ (where \mathcal{O}_{ξ} is the coadjoint orbit thru ξ). Note that we have an induced bijection $G / G_{\xi} \rightarrow \mathcal{O}_{\xi}$. (It is a general fact that the quotient G / G_{ξ} is naturally a smooth manifold, and we equip \mathcal{O}_{ξ} with the smooth structure for which this bijection is a diffeomorphism.)
Verify that $q\left(R_{h}(g)\right)=\operatorname{Ad}_{h^{-1}}^{*}(q(g))$, and conclude that $d q\left(\left.u^{L}\right|_{g}\right)=\left.u_{\mathfrak{g}^{*}}\right|_{q(g)}$ and $d q\left(\left.u^{R}\right|_{g}\right)=\left.\left(\operatorname{Ad}_{g^{-1}}(u)\right)_{\mathfrak{g}^{*}}\right|_{q(g)}$.
(b) Verify that $\mu: T^{*} G \rightarrow \mathfrak{g}^{*}, \mu\left(\zeta_{g}\right)=\left(d_{e} R_{g}\right)^{*} \zeta_{g}$, is a moment map for ψ. Note that any $\xi \in \mathfrak{g}^{*}$ is a regular value for μ and that the natural projection $\pi: \mu^{-1}(\xi) \rightarrow G$ is a diffeomorphism. Show also that the projection induces a diffeomorphism:

$$
\left(\mu^{-1}(\xi) / G_{\xi}\right) \xrightarrow{\sim}\left(G / G_{\xi}\right) .
$$

Using the identification $G / G_{\xi} \cong \mathcal{O}_{\xi}$ of (a), find an expression for the resulting diffeomorphism $\varphi:\left(\mu^{-1}(\xi) / G_{\xi}\right) \xrightarrow{\sim} \mathcal{O}_{\xi}$.
(c) Show that $-\varphi^{*} \omega_{k k s}=\omega_{\text {red }}$, that is, the reduced space $\left(\mu^{-1}(\xi) / G_{\xi}, \omega_{r e d}\right)$ is symplectomorphic to $\left(\mathcal{O}_{\xi},-\omega_{k k s}\right)$.

Hints: recall that, for the projection $\pi_{\xi}: \mu^{-1}(\xi) \rightarrow \mathcal{O}_{\xi}$ and inclusion $i_{\xi}: \mu^{-1}(\xi) \rightarrow$ $T^{*} G$, we must show that $\pi_{\xi}^{*} \omega_{k k s}=i_{\xi}^{*} d \alpha_{\text {tau }}$; note that it suffices to check this equality on vectors X tangent to $\mu^{-1}(\xi)$ satisfying $\pi_{*} X=u^{R}$, for $u \in \mathfrak{g}$ (why?).

Problem 9: ("Shift trick") Let (M, ω, μ) be a hamiltonian G-space. Take a coadjoint orbit $\overline{\mathcal{O}_{\xi}}$ (with symplectic form $-\omega_{k k s}$). Verify that the diagonal G-action on $M \times \overline{\mathcal{O}_{\xi}}$ is hamiltonian, with moment map

$$
\hat{\mu}: M \times \overline{\mathcal{O}_{\xi}} \rightarrow \mathfrak{g}^{*}, \quad \hat{\mu}(x, \eta)=\mu(x)-\eta,
$$

and that ξ is a regular value for μ if and only if 0 is a regular value for $\hat{\mu}$.
Note that we have a natural inclusion $j: \mu^{-1}(\xi) \hookrightarrow \hat{\mu}^{-1}(0), x \mapsto(x, \xi)$. Show that this inclusion induces a diffeomorphism $\mu^{-1}(\xi) / G_{\xi} \xrightarrow{\sim} \hat{\mu}^{-1}(0) / G$ preserving the reduced symplectic forms.

