Geometria Simplética 2021, Lista 7

Prof. H. Bursztyn

Entrega dia 03/11
Problem 1: Let G be a Lie group. Let $X: G \rightarrow T G$ be a vector field (just meaning that it is a section of the projection $T G \rightarrow G$), not necessarily smooth. Show that if X is left invariant (i.e., $d L_{g}(X)=X \circ L_{g}$ for all $g \in G$), then X is automatically smooth.
Conclude that an analogous result holds for differential forms: if a section $\eta: G \rightarrow \wedge^{k} T^{*} G$ is left invariant $\left(L_{g}^{*} \eta=\eta\right)$, then η is a smooth k-form. Check that an analogous result holds for G-invariant forms on a homogeneous manifold.

Problem 2: (a) Prove that any connected Lie group G is generated (as a group) by any open neighborhood U of the identity element (i.e., $G=\cup_{n=1}^{\infty} U^{n}$). (b) Suppose that two Lie group homomorphisms $\varphi, \psi: G \rightarrow H$ are such that $\left.d \varphi\right|_{e}=\left.d \psi\right|_{e}$. Show that φ and ψ coincide on the connected component of G containing the identity e.
Problem 3: Consider the Lie groups $S U(2)=\left\{A \in M_{2}(\mathbb{C}) \mid A A^{*}=\operatorname{Id}, \operatorname{det}(A)=1\right\}$ and $S O(3)=\left\{A \in M_{3}(\mathbb{R}) \mid A A^{t}=\operatorname{Id}, \operatorname{det}(A)=1\right\}$.
a) Show that

$$
S U(2)=\left\{\left(\begin{array}{cc}
a & b \\
-\bar{b} & \bar{a}
\end{array}\right), \quad a, b \in \mathbb{C},|a|^{2}+|b|^{2}=1\right\} .
$$

Conclude that, as a manifold, $S U(2)$ is diffeomorphic to S^{3} (hence it is simply connected).
Recall the definition of the quaternions \mathbb{H}. Show that the sphere S^{3}, seen as quaternions of norm 1, inherits a Lie group structure, with respect to which it is isomorphic to $S U(2)$.
b) Verify that

$$
\mathfrak{s u}(2)=\left\{\left(\begin{array}{cc}
i \alpha & \beta \\
-\bar{\beta} & -i \alpha
\end{array}\right), \alpha \in \mathbb{R}, \beta \in \mathbb{C}\right\} .
$$

Consider the identification $\mathfrak{s u}(2) \cong \mathbb{R}^{3}$, that takes the element in $\mathfrak{s u}(2)$ determined by α, β to the vector $(\alpha, \operatorname{Re} \beta, \operatorname{Im} \beta)$ in \mathbb{R}^{3}. Observe that, with respect to this identification, det in $\mathfrak{s u}(2)$ corresponds to $\|\cdot\|^{2}$ in \mathbb{R}^{3}.
c) Verify that each element $A \in S U(2)$ defines a linear transformation on the vector space $\mathfrak{s u}(2)$ by conjugation: $B \mapsto A B A^{-1}$. Show that, with the identification $\mathfrak{s u}(2) \cong \mathbb{R}^{3}$, we obtain a representation (i.e., a linear action) of $S U(2)$ on \mathbb{R}^{3} that is norm preserving. Conclude that we have a homomorphism $\phi: S U(2) \rightarrow O(3)$, verifying that its image is $S O(3)$ and its kernel is $\{\mathrm{Id},-\mathrm{Id}\}$.
d) Conclude that $S U(2) \cong S^{3}$ is a double cover of $S O(3)$ (hence it is its universal cover, since it's simply connected), and the covering map identifies antipodal points of S^{3}. Hence, as manifolds, $S O(3)$ is identified with $\mathbb{R} P^{3}$.

Problem 4: Let \mathfrak{g} be the Lie algebra of a Lie group G, and let $k: \mathfrak{g} \times \mathfrak{g} \rightarrow \mathbb{R}$ be a symmetric bilinear form that is Ad-invariant (i.e., $k\left(\operatorname{Ad}_{g}(u), \operatorname{Ad}_{g}(v)\right)=k(u, v)$ for $\left.g \in G\right)$.
a) Show that the map $k^{\sharp}: \mathfrak{g} \rightarrow \mathfrak{g}^{*}, k^{\sharp}(u)(v)=k(u, v)$, is G-equivariant:

$$
\begin{equation*}
k^{\sharp} \circ \operatorname{Ad}_{g}=\left(\operatorname{Ad}^{*}\right)_{g} \circ k^{\sharp}, \quad \forall g \in G . \tag{1}
\end{equation*}
$$

[recall: $\left.\left(\mathrm{Ad}^{*}\right)_{g}:=\left(\operatorname{Ad}_{g^{-1}}\right)^{*}\right]$. In particular, when k is nondegenerate (i.e., k^{\sharp} is an isomorphism), the adjoint and coadjoint actions are equivalent.
b) Verify that (1) implies that $k([w, u], v)=-k(u,[w, v]), \forall u, v, w \in \mathfrak{g}$, and that both conditions are equivalent when G is connected.

Problem 5: For a Lie algebra \mathfrak{g}, there is always a canonical bilinear form $k: \mathfrak{g} \times \mathfrak{g} \rightarrow \mathbb{R}$, called Killing form, given by:

$$
k(u, v)=\operatorname{tr}\left(\operatorname{ad}_{u} \mathrm{ad}_{v}\right) .
$$

(recall: $\operatorname{ad}_{u}: \mathfrak{g} \rightarrow \mathfrak{g}, \operatorname{ad}_{u}(v)=[u, v]$.)
a) Note that k is symmetric, and check that it is Ad-invariant.
b) A Lie algebra is called semi-simple if k is nondegenerate. Show that $\mathfrak{s o}(3)$ is semisimple.

Problem 6: Consider the linear isomorphism $\mathbb{R}^{3} \rightarrow \mathfrak{s o}(3)$, given by

$$
v=(x, y, z) \mapsto \widehat{v}:=\left(\begin{array}{ccc}
0 & -z & y \\
z & 0 & -x \\
-y & x & 0
\end{array}\right)
$$

a) Describe the Lie bracket on \mathbb{R}^{3} induced by the commutator in $\mathfrak{s o}(3)$, and the inner product in $\mathfrak{s o}(3)$ that corresponds to the canonical inner product in \mathbb{R}^{3}.
b) Describe the $S O(3)$-action on \mathbb{R}^{3} corresponding to the adjoint action, its orbits, as well as its infinitesimal generators. Find (without any calculation!) a description of the coadjoint action on \mathbb{R}^{3} (identified with $\left(\mathbb{R}^{3}\right)^{*}$ through the canonical inner product).

Problem 7: Let (V, Ω) be a symplectic vector space, and consider $H:=V \times \mathbb{R}=\{(v, t)\}$. This space H, with the multiplication

$$
\left(v_{1}, t_{1}\right) \cdot\left(v_{2}, t_{2}\right)=\left(v_{1}+v_{2}, \frac{1}{2} \Omega\left(v_{1}, v_{2}\right)+t_{1}+t_{2}\right)
$$

is a Lie group, called the Heisenberg group (find the identity elements and inverses in H).
(a) Show (directly from the conjugation formula in H) that $\operatorname{Ad}_{(v, t)}(X, r)=(X, r+$ $\Omega(v, X))$, for $(X, r) \in \mathfrak{h}=\operatorname{Lie}(H)=V \times \mathbb{R}$. Describe the adjoint orbits, verifying that their possible dimensions are zero and one.
(b) Verify that $\operatorname{ad}_{(Y, s)}(X, r)=(0, \Omega(Y, X))$. [Recalling that $\operatorname{ad}_{(Y, s)}(X, r)=[(Y, s),(X, r)]$, we obtain a formula for the Lie bracket in \mathfrak{h}.]
(c) Describe the coadjoint action of H on $\mathfrak{h}^{*}=V^{*} \times \mathbb{R}^{*}$ and its orbits, analyzing the possible dimensions.

