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Problem 1: Let G be a Lie group. Let X : G→ TG be a vector field (just meaning that
it is a section of the projection TG→ G), not necessarily smooth. Show that if X is left
invariant (i.e., dLg(X) = X ◦ Lg for all g ∈ G), then X is automatically smooth.
Conclude that an analogous result holds for differential forms: if a section η : G→ ∧kT ∗G
is left invariant (L∗gη = η), then η is a smooth k-form. Check that an analogous result
holds for G-invariant forms on a homogeneous manifold.

Problem 2: (a) Prove that any connected Lie group G is generated (as a group) by any
open neighborhood U of the identity element (i.e., G = ∪∞n=1U

n). (b) Suppose that two
Lie group homomorphisms ϕ, ψ : G→ H are such that dϕ|e = dψ|e. Show that ϕ and ψ
coincide on the connected component of G containing the identity e.

Problem 3: Consider the Lie groups SU(2) = {A ∈M2(C) |AA∗ = Id, det(A) = 1} and
SO(3) = {A ∈M3(R) |AAt = Id, det(A) = 1}.

a) Show that

SU(2) =

{(
a b

−b a

)
, a, b ∈ C, |a|2 + |b|2 = 1

}
.

Conclude that, as a manifold, SU(2) is diffeomorphic to S3 (hence it is simply
connected).

Recall the definition of the quaternions H. Show that the sphere S3, seen as quater-
nions of norm 1, inherits a Lie group structure, with respect to which it is isomorphic
to SU(2).

b) Verify that

su(2) =

{(
iα β

−β −iα

)
, α ∈ R, β ∈ C

}
.

Consider the identification su(2) ∼= R3, that takes the element in su(2) determined
by α, β to the vector (α,Reβ, Imβ) in R3. Observe that, with respect to this iden-
tification, det in su(2) corresponds to ‖ · ‖2 in R3.

c) Verify that each element A ∈ SU(2) defines a linear transformation on the vector
space su(2) by conjugation: B 7→ ABA−1. Show that, with the identification
su(2) ∼= R3, we obtain a representation (i.e., a linear action) of SU(2) on R3 that
is norm preserving. Conclude that we have a homomorphism φ : SU(2) → O(3),
verifying that its image is SO(3) and its kernel is {Id,−Id}.

d) Conclude that SU(2) ∼= S3 is a double cover of SO(3) (hence it is its universal cover,
since it’s simply connected), and the covering map identifies antipodal points of S3.
Hence, as manifolds, SO(3) is identified with RP 3.



Problem 4: Let g be the Lie algebra of a Lie group G, and let k : g × g → R be a
symmetric bilinear form that is Ad-invariant (i.e., k(Adg(u),Adg(v)) = k(u, v) for g ∈ G).

a) Show that the map k] : g→ g∗, k](u)(v) = k(u, v), is G-equivariant:

k] ◦ Adg = (Ad∗)g ◦ k], ∀g ∈ G. (1)

[recall: (Ad∗)g := (Adg−1)∗]. In particular, when k is nondegenerate (i.e., k] is an
isomorphism), the adjoint and coadjoint actions are equivalent.

b) Verify that (1) implies that k([w, u], v) = −k(u, [w, v]), ∀u, v, w ∈ g, and that both
conditions are equivalent when G is connected.

Problem 5: For a Lie algebra g, there is always a canonical bilinear form k : g× g→ R,
called Killing form, given by:

k(u, v) = tr(aduadv).

(recall: adu : g→ g, adu(v) = [u, v].)

a) Note that k is symmetric, and check that it is Ad-invariant.

b) A Lie algebra is called semi-simple if k is nondegenerate. Show that so(3) is semi-
simple.

Problem 6: Consider the linear isomorphism R3 → so(3), given by

v = (x, y, z) 7→ v̂ :=

 0 −z y
z 0 −x
−y x 0


a) Describe the Lie bracket on R3 induced by the commutator in so(3), and the inner

product in so(3) that corresponds to the canonical inner product in R3.

b) Describe the SO(3)-action on R3 corresponding to the adjoint action, its orbits, as
well as its infinitesimal generators. Find (without any calculation!) a description
of the coadjoint action on R3 (identified with (R3)∗ through the canonical inner
product).

Problem 7: Let (V,Ω) be a symplectic vector space, and consider H := V ×R = {(v, t)}.
This space H, with the multiplication

(v1, t1) · (v2, t2) = (v1 + v2,
1

2
Ω(v1, v2) + t1 + t2),

is a Lie group, called the Heisenberg group (find the identity elements and inverses in H).

(a) Show (directly from the conjugation formula in H) that Ad(v,t)(X, r) = (X, r +
Ω(v,X)), for (X, r) ∈ h = Lie(H) = V × R. Describe the adjoint orbits, verifying
that their possible dimensions are zero and one.

(b) Verify that ad(Y,s)(X, r) = (0,Ω(Y,X)). [Recalling that ad(Y,s)(X, r) = [(Y, s), (X, r)],
we obtain a formula for the Lie bracket in h.]

(c) Describe the coadjoint action of H on h∗ = V ∗ × R∗ and its orbits, analyzing the
possible dimensions.
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