Geometria Simplética 2021, Lista 5

Prof. H. Bursztyn

Entrega dia 11/10

We use Einstein's convention for summations below.

Problem 1: Let us consider the Legendre transform $\mathbb{F}L : TQ \to T^*Q$ associated with a lagrangian $L : TQ \to \mathbb{R}$, let $\alpha \in \Omega^1(T^*M)$ be the tautological 1-form and $\omega_{can} = -d\alpha$. Assume that $\mathbb{F}L$ is a diffeomorphism (i.e., L is hyper-regular).

(a) Show that, in local coordinates x^i, v^i of TQ,

$$\omega_L := \mathbb{F}L^* \omega_{can} = \frac{\partial^2 L}{\partial v^i \partial x^j} dx^i dx^j + \frac{\partial^2 L}{\partial v^i \partial v^j} dx^i dv^j.$$

Verify that the matrix $\left(\frac{\partial^2 L}{\partial v^i \partial v^j}\right)$ is invertible.

(b) Let $Z \in \mathfrak{X}(TQ)$, locally written as $Z(x,v) = z^i(x,v)\frac{\partial}{\partial x^i} + w^j(x,v)\frac{\partial}{\partial v^j}$. Show that $i_Z\omega_L = dE$ if and only if $z^i(x,v) = v^i$ and w^j satisfies

$$\frac{\partial^2 L}{\partial v^i v^j}(x,v)w^j(x,v) = \frac{\partial L}{\partial x^i}(x,v) - \frac{\partial^2 L}{\partial v^i \partial x^j}(x,v)v^j.$$

Problem 2: Suppose that L is a hyper-regular lagrangian. Let $H = E \circ \mathbb{F}L^{-1}$, where $E: TQ \to \mathbb{R}$ is the energy $(E(v) = \langle \mathbb{F}L(v), v \rangle - L(v))$. Show that:

- (a) If $\gamma(t)$ is a solution of the lagrangian system defined by L, then $\zeta(t) := \mathbb{F}L(\gamma(t), \dot{\gamma}(t))$ is a solution of the hamiltonian system defined by H.
- (b) If $\zeta(t)$ is a solution of the hamiltonian system of H, then $\gamma(t) = \pi \circ \zeta(t)$ (where $\pi : T^*Q \to Q$ is the projection) is a solution of the lagrangian system; moreover, $\zeta(t) = \mathbb{F}L(\gamma(t), \dot{\gamma}(t)).$

Hints:

- Note that $\zeta(t)$ is a solution of the hamiltonian system defined by H on T^*Q if and only if $\sigma(t) = \mathbb{F}L^{-1}(\zeta(t))$ is solution of the hamiltonian system defined by E and ω_L in TQ.
- Show (use the previous problem) that $\sigma(t) = (\gamma(t), \xi(t))$ is a solution of the hamiltonian system defined by E and ω_L if and only if

$$\xi(t) = \dot{\gamma}(t), \quad and \quad \frac{\partial^2 L}{\partial v^i v^j}(\gamma, \dot{\gamma}) \ddot{\gamma}^j = \frac{\partial L}{\partial x^i}(\gamma, \dot{\gamma}) - \frac{\partial^2 L}{\partial v^i \partial x^j}(\gamma, \dot{\gamma}) \dot{\gamma}^j$$

Problem 3: Let g be a riemannian metric on Q, and consider the lagrangian $L: TQ \to \mathbb{R}$, $L(v) = \frac{1}{2}g(v, v)$. Compute the Legendre transform $\mathbb{F}L$, the energy E, the form ω_L on TQ, and the hamiltonian vector field associated with E; compare the associated hamiltonian system with the Euler-Lagrange equations relative to L.

Problem 4: Let Q be a riemannian manifold, and let $B \in \Omega^1(Q)$. Consider the "electromagnetic" lagrangian

$$L(x,v) = \frac{1}{2} ||v||^2 + B_x(v) - V(x).$$

Compute the corresponding hamiltonian. Show that the solution of the lagrangian system is the projection (on Q) of the solution of the system with hamiltonian $H(x,\xi) = \frac{1}{2} ||\xi||^2 + V$ (independent of B!), but with respect to the symplectic form $\omega - \pi^* dB$ (*Hint: recall lista* 2).