Geometria Simplética 2021, Lista 5

Prof. H. Bursztyn

Entrega dia 11/10
We use Einstein's convention for summations below.
Problem 1: Let us consider the Legendre transform $\mathbb{F} L: T Q \rightarrow T^{*} Q$ associated with a lagrangian $L: T Q \rightarrow \mathbb{R}$, let $\alpha \in \Omega^{1}\left(T^{*} M\right)$ be the tautological 1-form and $\omega_{\text {can }}=-d \alpha$. Assume that $\mathbb{F} L$ is a diffeomorphism (i.e., L is hyper-regular).
(a) Show that, in local coordinates x^{i}, v^{i} of $T Q$,

$$
\omega_{L}:=\mathbb{F} L^{*} \omega_{c a n}=\frac{\partial^{2} L}{\partial v^{i} \partial x^{j}} d x^{i} d x^{j}+\frac{\partial^{2} L}{\partial v^{i} \partial v^{j}} d x^{i} d v^{j} .
$$

Verify that the matrix $\left(\frac{\partial^{2} L}{\partial v^{i} \partial v^{j}}\right)$ is invertible.
(b) Let $Z \in \mathfrak{X}(T Q)$, locally written as $Z(x, v)=z^{i}(x, v) \frac{\partial}{\partial x^{i}}+w^{j}(x, v) \frac{\partial}{\partial v^{j}}$. Show that $i_{Z} \omega_{L}=d E$ if and only if $z^{i}(x, v)=v^{i}$ and w^{j} satisfies

$$
\frac{\partial^{2} L}{\partial v^{i} v^{j}}(x, v) w^{j}(x, v)=\frac{\partial L}{\partial x^{i}}(x, v)-\frac{\partial^{2} L}{\partial v^{i} \partial x^{j}}(x, v) v^{j} .
$$

Problem 2: Suppose that L is a hyper-regular lagrangian. Let $H=E \circ \mathbb{F} L^{-1}$, where $E: T Q \rightarrow \mathbb{R}$ is the energy $(E(v)=\langle\mathbb{F} L(v), v\rangle-L(v))$. Show that:
(a) If $\gamma(t)$ is a solution of the lagrangian system defined by L, then $\zeta(t):=\mathbb{F} L(\gamma(t), \dot{\gamma}(t))$ is a solution of the hamiltonian system defined by H.
(b) If $\zeta(t)$ is a solution of the hamiltonian system of H, then $\gamma(t)=\pi \circ \zeta(t)$ (where $\pi: T^{*} Q \rightarrow Q$ is the projection) is a solution of the lagrangian system; moreover, $\zeta(t)=\mathbb{F} L(\gamma(t), \dot{\gamma}(t))$.

Hints:

- Note that $\zeta(t)$ is a solution of the hamiltonian system defined by H on $T^{*} Q$ if and only if $\sigma(t)=\mathbb{F} L^{-1}(\zeta(t))$ is solution of the hamiltonian system defined by E and ω_{L} in $T Q$.
- Show (use the previous problem) that $\sigma(t)=(\gamma(t), \xi(t))$ is a solution of the hamiltonian system defined by E and ω_{L} if and only if

$$
\xi(t)=\dot{\gamma}(t), \quad \text { and } \frac{\partial^{2} L}{\partial v^{i} v^{j}}(\gamma, \dot{\gamma}) \ddot{\gamma}^{j}=\frac{\partial L}{\partial x^{i}}(\gamma, \dot{\gamma})-\frac{\partial^{2} L}{\partial v^{i} \partial x^{j}}(\gamma, \dot{\gamma}) \dot{\gamma}^{j}
$$

Problem 3: Let g be a riemannian metric on Q, and consider the lagrangian $L: T Q \rightarrow \mathbb{R}$, $L(v)=\frac{1}{2} g(v, v)$. Compute the Legendre transform $\mathbb{F} L$, the energy E, the form ω_{L} on $T Q$, and the hamiltonian vector field associated with E; compare the associated hamiltonian system with the Euler-Lagrange equations relative to L.

Problem 4: Let Q be a riemannian manifold, and let $B \in \Omega^{1}(Q)$. Consider the "electromagnetic" lagrangian

$$
L(x, v)=\frac{1}{2}\|v\|^{2}+B_{x}(v)-V(x) .
$$

Compute the corresponding hamiltonian. Show that the solution of the lagrangian system is the projection (on Q) of the solution of the system with hamiltonian $H(x, \xi)=\frac{1}{2}\|\xi\|^{2}+V$ (independent of $B!$), but with respect to the symplectic form $\omega-\pi^{*} d B$ (Hint: recall lista 2).

