Geometria Simplética 2021, Lista 4

Prof. H. Bursztyn

Entrega dia 03/10
Problem 1: Let M be a compact, connected, orientable n-dimensional manifold. Let $\Lambda_{0}, \Lambda_{1} \in \Omega^{n}(M)$ be two volume forms on M such that $\int_{M} \Lambda_{0}=\int_{M} \Lambda_{1}$. Show that there is a diffeomorphism $\phi \in \operatorname{Dif}(M)$ such that $\phi^{*}\left(\Lambda_{1}\right)=\Lambda_{0}$.
Hint: Show that $\Lambda_{t}=(1-t) \Lambda_{0}+t \Lambda_{1}$ is a volume form $\forall t \in[0,1]$, and note that the equality of total volumes implies that Λ_{0} and Λ_{1} define the same cohomology class (justify this fact). Then apply Moser's method.

Problem 2: Give an example of two symplectic forms on \mathbb{R}^{4} that induce the same orientation, but admit a convex combination that is degenerate. Is it possible to find an example like that, but admitting another path of symplectic forms from one to the other? What happens if we consider \mathbb{R}^{2} instead of \mathbb{R}^{4} ?

Problem 3: This problem is useful for Problem 4. (Cf. Problem 7 in lista 1)
Let (V, Ω) be a symplectic vector space (or, more generally, a symplectic vector bundle), and let $W \subseteq V$ be a coisotropic subspace (resp., coisotropic subbundle).
a) Let E be a complement of W^{Ω} in W (i.e., $W=W^{\Omega} \oplus E$). Show that the restriction of Ω to E is nondegenerate.
b) Let J be a Ω-compatible complex structure, with g the associated inner product. Show that Ω induces an identification of $J\left(W^{\Omega}\right)=W^{\perp}$ with $\left(W^{\Omega}\right)^{*}$. Taking E as the orthogonal complement (with respect to g) to W^{Ω} in W, show that the identification

$$
\begin{equation*}
V \cong E \oplus\left(W^{\Omega} \oplus\left(W^{\Omega}\right)^{*}\right) \tag{1}
\end{equation*}
$$

is an isomorphism of symplectic vector spaces (resp. bundles) - on the right-hand side, E is equipped with its induced symplectic form (see (a) above) and $W^{\Omega} \oplus\left(W^{\Omega}\right)^{*}$ with its canonical symplectic form.

Problem 4: Prove the following generalization of Weinstein's lagrangian neighborhood theorem to coisotropic submanifolds (due to Gotay, 1982): Let (M_{0}, ω_{0}) and (M_{1}, ω_{1}) be symplectic manifolds, and $\iota_{0}: Q \rightarrow M_{0}, \iota_{1}: Q \rightarrow M_{1}$ be coisotropic embeddings. If $\iota_{0}^{*} \omega_{0}=\iota_{1}^{*} \omega_{1}$, then there exist open neighborhoods \mathcal{U}_{0} and \mathcal{U}_{1} of Q, in M_{0} and M_{1}, and a diffeomorphism $\varphi: \mathcal{U}_{0} \rightarrow \mathcal{U}_{1}$ such that $\varphi(p)=p$ for all $p \in Q$ and $\varphi^{*} \omega_{1}=\omega_{0}$,.

Hint: For $i=0,1$, use compatible almost complex structures to write $\left.T M_{i}\right|_{Q}$ as in (1); conclude that there is an isomorphism $\left(\left.T M_{0}\right|_{Q}, \omega_{0}\right) \rightarrow\left(\left.T M_{1}\right|_{Q}, \omega_{1}\right)$ of symplectic vector bundles, so you can apply Weinstein's theorem.

