Geometria Simplética 2021, Lista 3

Prof: H. Bursztyn

Entrega 21/09

Problem 1: Consider a symplectic manifold $\left(M^{2 n}, \omega\right)$ with hamiltonian $H \in C^{\infty}(M)$. Suppose c is a regular value of H. We will show that $M_{c}=H^{-1}(c)$ inherits a natural volume form, invariant by the hamiltonian flow. We will actually show something more general.

Let $f_{1}, \ldots, f_{k} \in C^{\infty}(M)$ be first integrals of the flow of H (i.e., $\left\{H, f_{i}\right\}=0$). Let $F=$ $\left(f_{1}, \ldots, f_{k}\right): M \rightarrow \mathbb{R}^{k}$, and let $c \in \mathbb{R}^{k}$ be a regular value. Note that $M_{c}:=F^{-1}(c)$ in invariant by the flow of H. We will show that M_{c} carries a natural invariant volume form.
a) Take a neighborhood \mathcal{U} of M_{c} where $d f_{1}, \ldots, d f_{k}$ are linearly independent pointwise. Show that the Liouville volume form ($\Lambda_{\omega}=\omega^{n} / n!$) can be written in \mathcal{U} as $\Lambda_{\omega}=d f_{1} \wedge \ldots \wedge d f_{k} \wedge \sigma$, for some $\sigma \in \Omega^{2 n-k}(M)$. We then define a volume form $\Lambda_{c}:=\iota^{*} \sigma \in \Omega^{2 n-k}\left(M_{c}\right)$, were $\iota: M_{c} \hookrightarrow M$ is the inclusion.
Hint: find σ locally and use partition of unity.
b) Show that $d f_{1} \wedge \ldots \wedge d f_{k} \wedge \mathcal{L}_{X_{H}} \sigma=0$, and use this fact to see that we can write $\mathcal{L}_{X_{H}} \sigma=$ $\sum_{i=1}^{k} d f_{i} \wedge \rho_{i}$. Conclude that Λ_{c} is invariant by the flow of H.
c) Show that Λ_{c} does not depend on the choice σ.

Problem 2: Let M be a symplectic manifold, $\Psi=\left(\psi^{1}, \ldots, \psi^{k}\right): M \rightarrow \mathbb{R}^{k}$ a smooth map, and c a regular value. Consider a submanifold $N=\Psi^{-1}(c) \hookrightarrow M$.
(a) Show that N is coisotropic if and only if $\left.\left\{\psi^{i}, \psi^{j}\right\}\right|_{N}=0$ for all $i, j=1, \ldots, k$.
(b) Show that N is symplectic if and only if the matrix $\left(c^{i j}\right)$, with $c^{i j}=\left\{\psi^{i}, \psi^{j}\right\}$, is invertible for all $x \in N$. In this case, verify that we have the following expression for the Poisson bracket $\{\cdot, \cdot\}_{N}$ on N (known Dirac's bracket):

$$
\{f, g\}_{N}=\left.\left(\{\tilde{f}, \tilde{g}\}-\sum_{i j}\left\{\tilde{f}, \psi^{i}\right\} c_{i j}\left\{\psi^{j}, \tilde{g}\right\}\right)\right|_{N},
$$

where $\left(c_{i j}\right)=\left(c^{i j}\right)^{-1}, f, g \in C^{\infty}(N)$, e $\tilde{f}, \tilde{g} \in C^{\infty}(M)$ are arbitrary extensions of f, g, respectively. [Hint: we have $\left.T M\right|_{N}=T N \oplus T N^{\omega}$, and projections $q_{1}:\left.T M\right|_{N} \rightarrow T N$ and $q_{2}:\left.T M\right|_{N} \rightarrow T N^{\omega} ;$ show that $X_{f}=q_{1}\left(X_{\tilde{f}}\right)$, and verify that $\left.q_{2}(Y)=\sum_{i, j} d \psi^{i}(Y) c_{i j} X_{\psi^{j}}.\right]$

Problem 3: Consider a smooth map $\phi: Q_{1} \rightarrow Q_{2}$, and let

$$
R_{\phi}:=\left\{((x, \xi),(y, \eta)) \mid y=\phi(x), \xi=(T \phi)^{*} \eta\right\} \subset T^{*} Q_{1} \times T^{*} Q_{2} .
$$

Verify that R_{ϕ} is a lagrangian submanifold of $T^{*} Q_{1} \times \overline{T^{*} Q_{2}}$. Whenever ϕ is a diffeo, what is the relation between R_{ϕ} and the cotangent lift $\widehat{\phi}$?

Denote by $\Gamma_{\phi} \subset Q_{1} \times Q_{2}$ the graph of ϕ. What is the relation between $N^{*} \Gamma_{\phi}$ (the conormal bundle of Γ_{ϕ}) and R_{ϕ} ?

Problem 4: Let M be a manifold and $\omega \in \Omega^{k}(M)$. Suppose that $\pi: M \rightarrow B$ is a surjective submersion with connected fibers. We say that ω is basic (with respect to π) if there exists a form $\bar{\omega} \in \Omega^{k}(B)$ such that $\pi^{*} \bar{\omega}=\omega$.
(a) Show that ω is basic iff $i_{X} \omega=0$ and $\mathcal{L}_{X} \omega=0$ for all vector fields X tangent to the fibers of π. In particular, if ω is closed, show that it is basic if $\operatorname{ker}(T \pi) \subseteq \operatorname{ker}(\omega)$ (pointwise in M).
(b) Suppose that ω is a closed 2 -form on M and $\operatorname{ker}(T \pi)=\operatorname{ker}(\omega)$. Show that $\omega=\pi^{*} \bar{\omega}$ and $\bar{\omega} \in \Omega^{2}(B)$ is symplectic.
(c) (Application to reduction) Let (M, ω) be a symplectic manifold and $\iota: N \hookrightarrow M$ a submanifold such that $D=T N \cap T N^{\omega} \subset T N$ has constant rank (e.g., N could be coisotropic). We saw in class that D is an integrable distribution (by Frobenius); suppose that the leafspace $B:=N / \sim$ is smooth so that the natural projection $\pi: N \rightarrow B$ is a submersion. Show that B inherits a unique symplectic form $\omega_{\text {red }}$ with the property that $\pi^{*} \omega_{\text {red }}=\iota^{*} \omega$.

