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Problem 1: Verify (and justify) whether or not the following manifolds admit a symplectic struc-
ture: S1 × S3, R3 × S3, T3 × S3.

Problem 2: Show that the tautological 1-form α ∈ Ω1(T ∗Q) is uniquely characterized by the
following property: for any 1-form µ ∈ Ω1(Q),

µ∗α = µ,

where on the left-hand side we view µ as a map µ : Q→ T ∗Q.

Problem 3: We will characterize symplectomorphisms T ∗Q → T ∗Q which are cotangent lifts of
diffeomorphisms φ : Q→ Q. Let α be the tautological 1-form on M = T ∗Q and ω = −dα. We saw
in class that cotangent lifts preserve α. We willl show the converse of this fact.

Let F : M →M be a symplectomorphism such that F ∗α = α.

(a) Let v ∈ X(M) be the unique vector field such that ivω = −α; note that, locally, it is given
by

∑
i ξi

∂
∂ξi

(v is known as the Euler vector field) . Show that F∗v = v.

(b) Let ϕvt denote the flow of v. Show that ϕvt ◦ F = F ◦ ϕvt . Check that, in coordinates,
ϕvt (x, ξ) = (x, etξ), −∞ < t <∞.

(c) Verify that, for p ∈ T ∗xQ, F (λp) = λF (p), ∀λ ∈ R. Conclude that there exists φ : Q → Q
such that φ ◦ π = π ◦ F (here π : T ∗Q→ Q is the projection). Finally, show that F = φ̂ (the
cotangent lift of φ).

Problem 4: Let α ∈ Ω1(T ∗Q) be the tautological 1-form. We will now see examples of symplec-
tomorphisms of T ∗Q which are not cotangent lifts. Let A ∈ Ω1(Q) and consider the associated
“fiber-translation” map ϕA : T ∗Q→ T ∗Q, (x, ξ) 7→ (x, ξ +Ax).

(a) Show that
ϕ∗Aα− α = π∗A,

where π : T ∗Q → Q is the projection. It follows that ϕA is a symplectomorphism iff A is
closed.

(b) Consider functions that are constant along the fibers of T ∗Q (i.e., of the form H = π∗f , for
f ∈ C∞(Q)). Describe their hamiltonian vector fields in local cotangent coordinates, as well
as their flows.
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Problem 5: Let ω = −dα be the canonical symplectic form on T ∗Q. Prove that, if B ∈ Ω2(Q) is
closed, then

ωB := ω − π∗B

is symplectic and that, if B,B′ ∈ Ω2(Q) are closed and such that B − B′ = dA, then ϕA (defined
in the previous problem) is a symplectomorphism from (T ∗Q,ωB) to (T ∗Q,ωB′).

Problem 6: Consider the vector field X ∈ X(Q), written in local coordinates (x1, . . . , xn) as∑
iXi

∂
∂xi

. Show that the local expression of its cotangent lift X̂ ∈ X(T ∗Q) (in cotangent coordi-
nates) is

X̂(x, ξ) =

n∑
i=1

Xi
∂

∂xi
−

n∑
i,j=1

ξi
∂Xi

∂xj

∂

∂ξj
.

Verify that the hamiltonians associated with these vector fields (we saw in class they are hamilto-
nian) are given by functions which are linear along the fibers of T ∗Q.

Problem 7: Let ω ∈ Ω2(M) be a nondegenerate 2-form. For f ∈ C∞(M), let Xf ∈ X(M) be
defined by iXf

ω = df . Consider the bracket {f, g} := ω(Xg, Xf ). Verify that dω = 0 if and only if
{·, ·} satisfies the Jacobi identity.

Problem 8: (1) Consider symplectic manifolds (Mi, ωi), with Poisson bracket {·, ·}i, i = 1, 2, and
let φ : M1 →M2 be a smooth map.

(a) Prove that, if φ is a diffeomorphism, then it is a Poisson map ({φ∗f, φ∗g}1 = φ∗({f, g}2) for
all f, g ∈ C∞(M2)) if and only if φ∗ω2 = ω1.

(b) Find examples of M1, M2 and φ : M1 → M2 such that (1) φ is a Poisson map but does not
satisfy φ∗ω2 = ω1; (2) φ satisfies φ∗ω2 = ω1 but is not a Poisson map.

Hint: Consider R2 and R4 with their canonical symplectic structures and Poisson brackets,
and the maps R2 → R4, (q1, p1) 7→ (q1, p1, 0, 0), and R4 → R2, (q1, p1, q2, p2) 7→ (q1, p1).

Problem 9:

(a) Consider S2 = {x ∈ R3 | ‖x‖ = 1} equipped with the area form ωx(u, v) = 〈x, u × v〉 (where
x ∈ S2, u, v ∈ TxS

2, and × is the vector product). Use cylindrical coordinates to prove
Darboux’s theorem directly in this example.

(b) More generally: show that on a 2-dimensional manifold, any non-vanishing 1-form can be
locally written as fdg, where f and g are smooth functions. Use this fact to give a direct
proof of Darboux’s theorem in 2 dimensions.


