Geometria Simplética 2021, Lista 10

Prof. H. Bursztyn

Entrega dia 06/12

Problem 1: Let (M, J) be an almost complex manifold. We say that $Q \hookrightarrow M$ is an almost complex submanifold if J(TQ) = TQ (if (M, J) is complex, then Q is a complex submanifold). Show that an almost complex submanifold Q of an almost Kähler manifold (M, J, ω) inherits an almost Kähler structure (in particular, it is symplectic). Also, if (M, J, ω) is Kähler, then Q is Kähler.

Problem 2: Let N_J be the Nijenhuis tensor associated to an almost complex structure J on M:

 $N_J(X,Y) := [JX, JY] - J[X, JY] - J[JX, Y] - [X, Y].$

- a) Check that $N_J(fX, gY) = fgN_J(X, Y)$, where $X, Y \in \mathcal{X}(M)$ and $f, g \in C^{\infty}(M)$. Hence N_J is a tensor (i.e., the value $N_J(X, Y)$ at a point $x \in M$ only depends on $X_x, Y_x \in T_xM$).
- b) Show that $N_J(X, JX) = 0$, and deduce that $N_J \equiv 0$ if M is a surface. Conclude (using the Newlander-Nirenberg theorem) that every orientable surface admits a complex/Kähler structure.

Problem 3: Check the "easy" direction of the Newlander-Nirenberg theorem:

- a) Let (M_1, J_1) and (M_2, J_2) be almost complex manifolds. Let $\phi : M_1 \to M_2$ satisfy $d\phi \circ J_1 = J_2 \circ d\phi$. Show that if X, Y are vector fields on M_1, X', Y' are vector fields on M_2 , and $X \sim_{\phi} X', Y \sim_{\phi} Y'$, then $N_{J_1}(X, Y) \sim_{\phi} N_{J_2}(X', Y')$.
- b) Verify that, if J_0 is the canonical complex structure on \mathbb{R}^{2n} , then $N_{J_0} \equiv 0$. If (M, J) is a complex manifold, conclude that $N_J \equiv 0$.

Problem 4: Let J be an almost complex structure on M and let $T_{10} \subset TM \otimes \mathbb{C}$ (complexification of TM) be the subbundle defined, pointwise, as the +i-eigenspace of J. Check that $T_{10} = \{X - iJX \mid X \in TM\}$, and show that $N_J = 0$ if and only if T_{10} is involutive with respect to the Lie bracket (extended to complex vector fields).

Problem 5: Show that $\mathbb{C}P^1$ is diffeomorphic (as a 2-dim real manifold) to S^2 . (*Hint: stereographic projection on* S^2 .)

Verify that the Fubini-Study form on the chart $\mathcal{U}_0 = \{[z_0, z_1] \in \mathbb{C}P^1 \mid z_0 \neq 0\}$ is given by:

$$\omega_{\rm FS} = \frac{dx \wedge dy}{(x^2 + y^2 + 1)^2},$$

where $\frac{z_1}{z_0} = z = x + iy$ (usual coordinate on \mathbb{C}). Use this expression to calculate the total area of $\mathbb{C}P^1$ with respect to ω_{FS} :

$$\int_{\mathbb{C}P^1} \omega_{\mathrm{FS}} = \int_{\mathbb{R}^2} \frac{dx \wedge dy}{(x^2 + y^2 + 1)^2}$$

Check that $\omega_{\rm FS} = \frac{1}{4}\omega_{\rm area}$, where $\omega_{\rm area}$ is the area form on S^2 .

Problem 6: Consider two Kähler forms ω_0 and ω_1 on a compact complex manifold (M, J). Show that (M, ω_0) and (M, ω_1) are symplectomorphic. (*Hint: Check that* $\omega_t = t\omega_1 + (1 - t)\omega_0$ is symplectic for all $0 \le t \le 1$).

Problem 7: Consider the hamiltonian action of S^1 on \mathbb{C}^n from lista 8 (problem 5). For each t > 0, show that the reduced space $\mu^{-1}(-t/2)/S^1$ is $\mathbb{C}P^{n-1}$ with the symplectic form $\omega_{red} = t\omega_{FS}$ (ω_{FS} is the Fubini-Study form). (*Hint: show that* $\pi^*\omega_{FS} = \frac{i}{2}\partial\overline{\partial}\log(|z|^2)$, where $\pi : \mathbb{C}^n \setminus \{0\} \to \mathbb{C}P^{n-1}$ is the natural projection, and that the pullback of this form to the level sets of μ agree with the pullback of the canonical symplectic form.)

Problem 8: The usual action of U(n+1) on \mathbb{C}^{n+1} induces an action of U(n+1) on $\mathbb{C}P^n$. Show that this action is hamiltonian and find a formula for the moment map. (*Hint:* \mathbb{C}^{n+1} carries (hamiltonian) actions of U(n+1) and S^1 ; regarding $\mathbb{C}P^n$ as a symplectic reduction by S^1 (as above), show that the moment map for the action of U(n+1) on \mathbb{C}^{n+1} (see lista 8, problem 6) induces a moment map for the action of U(n+1) on $\mathbb{C}P^n$).