Geometria Simplética 2021, Lista 10

Prof. H. Bursztyn

Entrega dia 06/12

Problem 1: Let (M, J) be an almost complex manifold. We say that $Q \hookrightarrow M$ is an almost complex submanifold if $J(T Q)=T Q$ (if (M, J) is complex, then Q is a complex submanifold). Show that an almost complex submanifold Q of an almost Kähler manifold (M, J, ω) inherits an almost Kähler structure (in particular, it is symplectic). Also, if (M, J, ω) is Kähler, then Q is Kähler.

Problem 2: Let N_{J} be the Nijenhuis tensor associated to an almost complex structure J on M :

$$
N_{J}(X, Y):=[J X, J Y]-J[X, J Y]-J[J X, Y]-[X, Y] .
$$

a) Check that $N_{J}(f X, g Y)=f g N_{J}(X, Y)$, where $X, Y \in \mathcal{X}(M)$ and $f, g \in C^{\infty}(M)$. Hence N_{J} is a tensor (i.e., the value $N_{J}(X, Y)$ at a point $x \in M$ only depends on $\left.X_{x}, Y_{x} \in T_{x} M\right)$.
b) Show that $N_{J}(X, J X)=0$, and deduce that $N_{J} \equiv 0$ if M is a surface. Conclude (using the Newlander-Nirenberg theorem) that every orientable surface admits a complex/Kähler structure.

Problem 3: Check the "easy" direction of the Newlander-Nirenberg theorem:
a) Let $\left(M_{1}, J_{1}\right)$ and $\left(M_{2}, J_{2}\right)$ be almost complex manifolds. Let $\phi: M_{1} \rightarrow M_{2}$ satisfy $d \phi \circ J_{1}=J_{2} \circ d \phi$. Show that if X, Y are vector fields on $M_{1}, X^{\prime}, Y^{\prime}$ are vector fields on M_{2}, and $X \sim_{\phi} X^{\prime}, Y \sim_{\phi} Y^{\prime}$, then $N_{J_{1}}(X, Y) \sim_{\phi} N_{J_{2}}\left(X^{\prime}, Y^{\prime}\right)$.
b) Verify that, if J_{0} is the canonical complex structure on $\mathbb{R}^{2 n}$, then $N_{J_{0}} \equiv 0$. If (M, J) is a complex manifold, conclude that $N_{J} \equiv 0$.

Problem 4: Let J be an almost complex structure on M and let $T_{10} \subset T M \otimes \mathbb{C}$ (complexification of $T M)$ be the subbundle defined, pointwise, as the $+i$-eigenspace of J. Check that $T_{10}=\{X-i J X \mid X \in T M\}$, and show that $N_{J}=0$ if and only if T_{10} is involutive with respect to the Lie bracket (extended to complex vector fields).

Problem 5: Show that $\mathbb{C} P^{1}$ is diffeomorphic (as a 2-dim real manifold) to S^{2}. (Hint: stereographic projection on S^{2}.)
Verify that the Fubini-Study form on the chart $\mathcal{U}_{0}=\left\{\left[z_{0}, z_{1}\right] \in \mathbb{C} P^{1} \mid z_{0} \neq 0\right\}$ is given by:

$$
\omega_{\mathrm{FS}}=\frac{d x \wedge d y}{\left(x^{2}+y^{2}+1\right)^{2}},
$$

where $\frac{z_{1}}{z_{0}}=z=x+i y$ (usual coordinate on \mathbb{C}). Use this expression to calculate the total area of $\mathbb{C} P^{1}$ with respect to ω_{FS} :

$$
\int_{\mathbb{C} P^{1}} \omega_{\mathrm{FS}}=\int_{\mathbb{R}^{2}} \frac{d x \wedge d y}{\left(x^{2}+y^{2}+1\right)^{2}}
$$

Check that $\omega_{\mathrm{FS}}=\frac{1}{4} \omega_{\text {area }}$, where $\omega_{\text {area }}$ is the area form on S^{2}.
Problem 6: Consider two Kähler forms ω_{0} and ω_{1} on a compact complex manifold (M, J). Show that $\left(M, \omega_{0}\right)$ and $\left(M, \omega_{1}\right)$ are symplectomorphic.
(Hint: Check that $\omega_{t}=t \omega_{1}+(1-t) \omega_{0}$ is symplectic for all $0 \leq t \leq 1$).
Problem 7: Consider the hamiltonian action of S^{1} on \mathbb{C}^{n} from lista 8 (problem 5). For each $t>0$, show that the reduced space $\mu^{-1}(-t / 2) / S^{1}$ is $\mathbb{C} P^{n-1}$ with the symplectic form $\omega_{\text {red }}=t \omega_{F S}$ ($\omega_{F S}$ is the Fubini-Study form). (Hint: show that $\pi^{*} \omega_{F S}=\frac{i}{2} \partial \bar{\partial} \log \left(|z|^{2}\right)$, where $\pi: \mathbb{C}^{n} \backslash\{0\} \rightarrow \mathbb{C} P^{n-1}$ is the natural projection, and that the pullback of this form to the level sets of μ agree with the pullback of the canonical symplectic form.)

Problem 8: The usual action of $U(n+1)$ on \mathbb{C}^{n+1} induces an action of $U(n+1)$ on $\mathbb{C} P^{n}$. Show that this action is hamiltonian and find a formula for the moment map. (Hint: \mathbb{C}^{n+1} carries (hamiltonian) actions of $U(n+1)$ and S^{1}; regarding $\mathbb{C} P^{n}$ as a symplectic reduction by S^{1} (as above), show that the moment map for the action of $U(n+1)$ on \mathbb{C}^{n+1} (see lista 8, problem 6) induces a moment map for the action of $U(n+1)$ on $\left.\mathbb{C} P^{n}\right)$.

