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Problem 1: Let V be a symplectic vector space (dim(V ) = 2n), and Ω ∈ ∧2V ∗ be a skew-
symmetric bilinear form. Show that Ω is nondegenerate iff Ωn ̸= 0.

Problem 2: Let (V,Ω) be a symplectic vector space, and let W ⊆ V be any linear subspace.

a) Show that VW := W
W∩WΩ inherits a natural symplectic structure ΩW uniquely determined by

the condition π∗ΩW = Ω|W (here π : W → W/(W ∩WΩ) is the quotient projection).

(The space (VW ,ΩW ) is called the “reduced space”.)

b) Suppose that W is coisotropic, and let L ⊂ V be lagrangian. Show that the image of L ∩W
via π : W → VW is lagrangian in the reduced space.

Problem 3: We saw in class that any symplectomorphism T : V1 → V2 defines a lagrangian
subspace by its graph: ΓT := {(Tu, u), u ∈ V1} ⊂ V2 ⊕ V 1. So we think of lagrangian subspaces of
V2⊕V 1 as generalizations of symplectomorphisms. We now see how to generalize their composition.

Consider symplectic vector spaces V1, V2, V3, and E = V3 ⊕ V 2 ⊕ V2 ⊕ V 1.

a) Show that ∆ := {(v3, v2, v2, v1) ∈ E} is coisotropic in E and its reduction E∆ can be identified
with V3 ⊕ V 1.

b) Given lagrangian subspaces L1 ⊂ V2 ⊕ V 1 and L2 ⊂ V3 ⊕ V 2, define the composition of L2

and L1 by
L2 ◦ L1 := {(v3, v1) | ∃v2 ∈ V2 s.t. (v3, v2) ∈ L2, (v2, v1) ∈ L1}.

Show that L2 ◦L1 is a lagrangian subspace of V3 ⊕ V 1. (Hint: show that the composition can
be identified with the reduction of L2 × L1 ⊂ E with respect to ∆).

c) Let T1 : V1 → V2 and T2 : V2 → V3 be simplectomorphisms. Show that ΓT2◦T1 = ΓT2 ◦ ΓT1 .

Problem 4: Let (V, J) be a complex vector space, let Ω be a symplectic structure on V . Show
that J and Ω are compatible iff there exists a hermitian inner product h : V × V → C such that Ω
is its imaginary part. Show that any (complex) orthonormal basis of (V, h) can be extended to a
symplectic bases of (V,Ω).

Problem 5: Consider the symplectic vector space (R2n,Ω0), where Ω0(u, v) = −utJ0v (same
notation as in class). Check that its group of linear symplectomorphisms is given by Sp(2n) =
{A ∈ GL(2n) |AtJ0A = J0}. Show that Sp(2n) is a smooth submanifold of GL(2n) and that its
tangent space at the identity I ∈ GL(2n) is given by TISp(2n) = {A : R2n → R2n | AtJ0+J0A = 0}.
Conclude that Sp(2n) has dimension 2n2 + n. Verify also that Sp(2n) is not compact.
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Problem 6: Consider the standard compatible triple (Ω0, J0, g0) on R2n (as in class). Let O(2n)
be the linear orthogonal group of R2n (i.e, linear transformations preserving the canonical inner
product g0), and let Sp(2n) be the symplectic linear group. Through the identifiction R2n ∼= Cn

(as complex vector spaces), we may see GL(n,C) (the group of linear automorphisms of Cn) as a
subgroup of GL(2n,R): a complex matrix A+ iB is identified with the real 2n× 2n matrix(

A −B
B A

)
.

Let now U(n) ⊂ GL(n,C) be the group of linear transformation preserving the natural hermitian
inner product of Cn. Show that the intersection of any two of the groups

Sp(2n),O(2n),GL(n,C) ⊂ GL(2n,R)

is U(n).

Problem 7: Let (V,Ω) be a symplectic vector space, let W ⊆ V . Let J be a Ω-compatible complex
structure, and g the corresponding inner product. We have the relation J(WΩ) = W⊥g (verify it if
you have not done so). (a) Use this fact to show that any coisotropic subspace of V has an isotropic
complement. In particular, any lagrangian subspace L ⊂ V has a lagrangian complement L′, V =
L⊕L′. (b) Show that there is a natural identification L′ ∼= L∗, that induces a symplectomorphism
V ∼= L⊕ L∗ (where L⊕ L∗ has the natural symplectic structure ((l, α), (l′, α′)) 7→ α(l′)− α′(l)).

Problem 8: Let V be a real vector space and π ∈ ∧2V a Poisson structure. Consider π♯ : V ∗ → V
defined by β(π♯(α)) = π(α, β), and let R = π♯(V ∗) ⊆ V . Show that there is a unique symplectic
form Ω on R given by Ω(u, v) = π(α, β), where u = π♯(α) and v = π♯(β). Conversely, show that
given a pair (R,Ω), where R ⊆ V is a subspace and Ω ∈ ∧2R∗ is a symplectic form on R, there is
a unique Poisson structure π on V such that R = π♯(V ∗) and Ω is defined as above.

Bonus problem: Prove the following generalizations of the problem 7 about lagrangian comple-
ments:

(1) Let W1, . . . ,Wk be lagrangian subspaces of V . Show that there is a lagangian subspace L ⊂ V
satisfying L ∩Wj = {0} for all j. [Hint: problem 2 may help...]

(2) Let E ⊆ V 2n be an arbitrary subspace of dimension n. Show that there is a lagrangian subspace
L such that E ⊕ L = V .


