Geometria Simplética 2021, Lista 1

professor: Henrique Bursztyn

deadline: 29/08

Problem 1: Let V be a symplectic vector space $(\operatorname{dim}(V)=2 n)$, and $\Omega \in \wedge^{2} V^{*}$ be a skewsymmetric bilinear form. Show that Ω is nondegenerate iff $\Omega^{n} \neq 0$.

Problem 2: Let (V, Ω) be a symplectic vector space, and let $W \subseteq V$ be any linear subspace.
a) Show that $V_{W}:=\frac{W}{W \cap W^{\Omega}}$ inherits a natural symplectic structure Ω_{W} uniquely determined by the condition $\pi^{*} \Omega_{W}=\left.\Omega\right|_{W}$ (here $\pi: W \rightarrow W /\left(W \cap W^{\Omega}\right)$ is the quotient projection).
(The space $\left(V_{W}, \Omega_{W}\right)$ is called the "reduced space".)
b) Suppose that W is coisotropic, and let $L \subset V$ be lagrangian. Show that the image of $L \cap W$ via $\pi: W \rightarrow V_{W}$ is lagrangian in the reduced space.

Problem 3: We saw in class that any symplectomorphism $T: V_{1} \rightarrow V_{2}$ defines a lagrangian subspace by its graph: $\Gamma_{T}:=\left\{(T u, u), u \in V_{1}\right\} \subset V_{2} \oplus \bar{V}_{1}$. So we think of lagrangian subspaces of $V_{2} \oplus \bar{V}_{1}$ as generalizations of symplectomorphisms. We now see how to generalize their composition.

Consider symplectic vector spaces V_{1}, V_{2}, V_{3}, and $E=V_{3} \oplus \bar{V}_{2} \oplus V_{2} \oplus \bar{V}_{1}$.
a) Show that $\Delta:=\left\{\left(v_{3}, v_{2}, v_{2}, v_{1}\right) \in E\right\}$ is coisotropic in E and its reduction E_{Δ} can be identified with $V_{3} \oplus \bar{V}_{1}$.
b) Given lagrangian subspaces $L_{1} \subset V_{2} \oplus \bar{V}_{1}$ and $L_{2} \subset V_{3} \oplus \bar{V}_{2}$, define the composition of L_{2} and L_{1} by

$$
L_{2} \circ L_{1}:=\left\{\left(v_{3}, v_{1}\right) \mid \exists v_{2} \in V_{2} \text { s.t. }\left(v_{3}, v_{2}\right) \in L_{2},\left(v_{2}, v_{1}\right) \in L_{1}\right\} .
$$

Show that $L_{2} \circ L_{1}$ is a lagrangian subspace of $V_{3} \oplus \bar{V}_{1}$. (Hint: show that the composition can be identified with the reduction of $L_{2} \times L_{1} \subset E$ with respect to Δ).
c) Let $T_{1}: V_{1} \rightarrow V_{2}$ and $T_{2}: V_{2} \rightarrow V_{3}$ be simplectomorphisms. Show that $\Gamma_{T_{2} \circ T_{1}}=\Gamma_{T_{2}} \circ \Gamma_{T_{1}}$.

Problem 4: Let (V, J) be a complex vector space, let Ω be a symplectic structure on V. Show that J and Ω are compatible iff there exists a hermitian inner product $h: V \times V \rightarrow \mathbb{C}$ such that Ω is its imaginary part. Show that any (complex) orthonormal basis of (V, h) can be extended to a symplectic bases of (V, Ω).

Problem 5: Consider the symplectic vector space $\left(\mathbb{R}^{2 n}, \Omega_{0}\right)$, where $\Omega_{0}(u, v)=-u^{t} J_{0} v$ (same notation as in class). Check that its group of linear symplectomorphisms is given by $\operatorname{Sp}(2 n)=$ $\left\{A \in G L(2 n) \mid A^{t} J_{0} A=J_{0}\right\}$. Show that $S p(2 n)$ is a smooth submanifold of $G L(2 n)$ and that its tangent space at the identity $I \in G L(2 n)$ is given by $T_{I} S p(2 n)=\left\{A: \mathbb{R}^{2 n} \rightarrow \mathbb{R}^{2 n} \mid A^{t} J_{0}+J_{0} A=0\right\}$. Conclude that $S p(2 n)$ has dimension $2 n^{2}+n$. Verify also that $S p(2 n)$ is not compact.

Problem 6: Consider the standard compatible triple $\left(\Omega_{0}, J_{0}, g_{0}\right)$ on $\mathbb{R}^{2 n}$ (as in class). Let $\mathrm{O}(2 n)$ be the linear orthogonal group of $\mathbb{R}^{2 n}$ (i.e, linear transformations preserving the canonical inner product g_{0}), and let $\operatorname{Sp}(2 n)$ be the symplectic linear group. Through the identifiction $\mathbb{R}^{2 n} \cong \mathbb{C}^{n}$ (as complex vector spaces), we may see $\operatorname{GL}(n, \mathbb{C})$ (the group of linear automorphisms of \mathbb{C}^{n}) as a subgroup of $\operatorname{GL}(2 n, \mathbb{R})$: a complex matrix $A+i B$ is identified with the real $2 n \times 2 n$ matrix

$$
\left(\begin{array}{cc}
A & -B \\
B & A
\end{array}\right)
$$

Let now $\mathrm{U}(n) \subset \mathrm{GL}(n, \mathbb{C})$ be the group of linear transformation preserving the natural hermitian inner product of \mathbb{C}^{n}. Show that the intersection of any two of the groups

$$
\mathrm{Sp}(2 n), \mathrm{O}(2 n), \mathrm{GL}(n, \mathbb{C}) \subset \mathrm{GL}(2 n, \mathbb{R})
$$

is $U(n)$.
Problem 7: Let (V, Ω) be a symplectic vector space, let $W \subseteq V$. Let J be a Ω-compatible complex structure, and g the corresponding inner product. We have the relation $J\left(W^{\Omega}\right)=W^{\perp_{g}}$ (verify it if you have not done so). (a) Use this fact to show that any coisotropic subspace of V has an isotropic complement. In particular, any lagrangian subspace $L \subset V$ has a lagrangian complement $L^{\prime}, V=$ $L \oplus L^{\prime}$. (b) Show that there is a natural identification $L^{\prime} \cong L^{*}$, that induces a symplectomorphism $V \cong L \oplus L^{*}\left(\right.$ where $L \oplus L^{*}$ has the natural symplectic structure $\left.\left((l, \alpha),\left(l^{\prime}, \alpha^{\prime}\right)\right) \mapsto \alpha\left(l^{\prime}\right)-\alpha^{\prime}(l)\right)$.

Problem 8: Let V be a real vector space and $\pi \in \wedge^{2} V$ a Poisson structure. Consider $\pi^{\sharp}: V^{*} \rightarrow V$ defined by $\beta\left(\pi^{\sharp}(\alpha)\right)=\pi(\alpha, \beta)$, and let $R=\pi^{\sharp}\left(V^{*}\right) \subseteq V$. Show that there is a unique symplectic form Ω on R given by $\Omega(u, v)=\pi(\alpha, \beta)$, where $u=\pi^{\sharp}(\alpha)$ and $v=\pi^{\sharp}(\beta)$. Conversely, show that given a pair (R, Ω), where $R \subseteq V$ is a subspace and $\Omega \in \wedge^{2} R^{*}$ is a symplectic form on R, there is a unique Poisson structure π on V such that $R=\pi^{\sharp}\left(V^{*}\right)$ and Ω is defined as above.

Bonus problem: Prove the following generalizations of the problem 7 about lagrangian complements:
(1) Let W_{1}, \ldots, W_{k} be lagrangian subspaces of V. Show that there is a lagangian subspace $L \subset V$ satisfying $L \cap W_{j}=\{0\}$ for all j. [Hint: problem 2 may help...]
(2) Let $E \subseteq V^{2 n}$ be an arbitrary subspace of dimension n. Show that there is a lagrangian subspace L such that $E \oplus L=V$.

