HOMEWORK 6

1. Exercise. Let V be the vertex algebra generated by two even fields γ, β with bracket

$$
\left[\beta_{\lambda} \gamma\right]=1
$$

(a) Show that $L=\beta \partial \gamma$ is a Virasoro field making V into a conformal vertex algebra. What is its central charge?
(b) Let $v=\mu \beta+\nu \partial \gamma$ for two complex numbers μ, ν. Show that $L_{\mu, \nu}=L+\partial v$ produces another Virasoro field of V and compute its central charge.
(c) Show that $L_{\mu, \nu}$ is not a conformal structure unless $\mu=\nu=0$.
(d) Show that with respect to L, β is primary of conformal weight 1 and γ is primary of conformal weight 0 .
(e) Compute the transition functions of the vector bundle $\mathcal{V}_{\leq 1}$ generated by the subspace spanned by $|0\rangle, \gamma, \beta$ over any curve X. Identify this bundle as an extension of \mathscr{T}_{X}. Is this extension trivial?
2. Exercise. Let $\tau \in \mathbb{H}$ and consider the elliptic curve $E_{\tau}=\mathbb{C} /(\mathbb{Z}+\tau \mathbb{Z})$. In E_{τ} we have a coordinate induced from the global coordinate t in \mathbb{C}. Let V be a conformal vertex algebra.
(a) Show that \mathcal{V} is trivial on E_{τ}.
(b) Let $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ be an element of $S L(2, \mathbb{Z})$ such that $a d-b c=1$. Show that the action $\tau \mapsto \frac{a \tau+b}{c \tau+d}$ produces an action of $S L(2, \mathbb{Z})$ on \mathbb{H}.
(c) Let $\tau^{\prime}=\frac{a \tau+b}{c \tau+d}$ as in (b). Show that $t \mapsto \frac{t}{c \tau+d}$ induces an isomorphism $E_{\tau} \simeq E_{\tau^{\prime}}$.
(d) Show that the isomorphism of (c) identifies \mathcal{V}_{τ} with $\mathcal{V}_{\tau^{\prime}}$ (the bundles on each curve). Show the explicit change of coordinates for the fields.
(e) Consider the point x defined by $t=0$ in E_{τ} and define the linear functional on the fiber \mathcal{V}_{x} as follows. First we identify $\mathcal{V}_{x} \simeq V$ using the coordinate t, then

$$
V \ni a \mapsto \varphi(a)=\varphi(a ; \tau):=\operatorname{tr}_{V} Y(a, t) q^{L_{0}-c / 24}
$$

where $q=e^{2 \pi i \tau}$. Show that for a of conformal weight $\Delta \in \mathbb{Z}$ then $\varphi_{M}(a)$ transforms as a modular form of weight Δ, that is

$$
\varphi\left(a ; \tau^{\prime}\right)=(c \tau+d)^{\Delta} \varphi(a ; \tau)
$$

[Hint. Use (d)]

