HOMEWORK 6

1. **Exercise.** Let V be the vertex algebra generated by two even fields γ, β with bracket

$$[\beta_{\lambda}\gamma]=1.$$

- (a) Show that $L = \beta \partial \gamma$ is a Virasoro field making V into a conformal vertex algebra. What is its central charge?
- (b) Let $v = \mu \beta + \nu \partial \gamma$ for two complex numbers μ, ν . Show that $L_{\mu,\nu} = L + \partial v$ produces another Virasoro field of V and compute its central charge.
- (c) Show that $L_{\mu,\nu}$ is not a conformal structure unless $\mu = \nu = 0$.
- (d) Show that with respect to L, β is primary of conformal weight 1 and γ is primary of conformal weight 0.
- (e) Compute the transition functions of the vector bundle $\mathcal{V}_{<1}$ generated by the subspace spanned by $|0\rangle, \gamma, \beta$ over any curve X. Identify this bundle as an extension of \mathcal{T}_X . Is this extension trivial?
- 2. Exercise. Let $\tau \in \mathbb{H}$ and consider the elliptic curve $E_{\tau} = \mathbb{C}/(\mathbb{Z} + \tau \mathbb{Z})$. In E_{τ} we have a coordinate induced from the global coordinate t in \mathbb{C} . Let V be a conformal vertex algebra.
 - (a) Show that \mathcal{V} is trivial on E_{τ} .
 - (b) Let $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ be an element of $SL(2,\mathbb{Z})$ such that ad-bc=1. Show that the action $\tau\mapsto \frac{a\tau+b}{c\tau+d}$ produces an action of $SL(2,\mathbb{Z})$ on \mathbb{H} .

 - (c) Let $\tau' = \frac{a\tau + b}{c\tau + d}$ as in (b). Show that $t \mapsto \frac{t}{c\tau + d}$ induces an isomorphism $E_{\tau} \simeq E_{\tau'}$. (d) Show that the isomorphism of (c) identifies \mathcal{V}_{τ} with $\mathcal{V}_{\tau'}$ (the bundles on each curve). Show the explicit change of coordinates for the fields.
 - (e) Consider the point x defined by t=0 in E_{τ} and define the linear functional on the fiber \mathcal{V}_x as follows. First we identify $\mathcal{V}_x \simeq V$ using the coordinate t, then

$$V \ni a \mapsto \varphi(a) = \varphi(a;\tau) := \operatorname{tr}_V Y(a,t) q^{L_0 - c/24}.$$

where $q = e^{2\pi i \tau}$. Show that for a of conformal weight $\Delta \in \mathbb{Z}$ then $\varphi_M(a)$ transforms as a modular form of weight Δ , that is

$$\varphi(a;\tau') = (c\tau + d)^{\Delta} \varphi(a;\tau).$$

[Hint. Use (d)]

Date: Due: April 22th.