HOMEWORK 5

1. Exercise. Let V be a conformal vertex algebra. Show that

$$
\left[L_{n}, Y(a, w)\right]=\sum_{m \geq-1}\binom{n+1}{m+1} Y\left(L_{m} a, w\right) w^{n-m}
$$

2. Exercise. Let $v(t) \partial_{t}=v_{1} t^{2} \partial_{t}+v_{2} t^{3} \partial_{t}+\ldots$ be a derivation of $\mathscr{O}=k[[t]]$. Consider the automorphism of \mathscr{O} :

$$
t \mapsto \rho(t)=\exp \left(v(t) \partial_{t}\right) v_{0} \cdot t=v_{0} t+v_{1} v_{0} t^{2}+\ldots
$$

for $v_{0} \in k^{*}$. Let $R(\rho)$ be the automorphism of V given by

$$
R(\rho)=\exp \left(-\sum_{i>0} v_{i} L_{i}\right) v_{0}^{-L_{0}}
$$

Show that $R(\tau \circ \rho)=R(\rho) R(\tau)$ where $\tau \circ \rho$ is the composition of the automorphisms.
3. Exercise. Let V be a vertex algebra and $a, b, c \in V$. Consider a linear functional $\varphi \in V^{*}$. Show that

$$
\begin{gathered}
\varphi(Y(a, z) Y(b, w) c) \in k((z))((w)) \\
(-1)^{a b} \varphi(Y(b, w) Y(a, z) c) \in k((w))((z)) \\
\varphi(Y(Y(a, z-w) b, w) c) \in k((w))((z-w))
\end{gathered}
$$

are three expansions of the same element in $V[[z, w]]\left[z^{-1}, w^{-1},(z-w)^{-1}\right]$.
4. Exercise. Consider the $b c-\beta \gamma$ system. This is a vertex algebra generated by 4 fields. $b c$ are odd, $\beta \gamma$ are even and their brackets are given by

$$
\left[\beta_{\lambda} \gamma\right]=1, \quad[b, c]=1
$$

Find a Virasoro vector L such that γ, c are primary of conformal weight 0 and β, γ are primary of conformal weight 1 with respect to L.

