HOMEWORK 3

1. Exercise. Let V be a vector space and $\mathcal{F}(V):=\operatorname{Hom}_{k}(V, V((t)))$ be the space of quantum fields in V. Let $T \operatorname{End}(V)$ be an even endomorphism and let $a(z) \mathcal{F}(V)$ be translation covariant, that is $[T, a(z)] \partial_{z} a(z)$. Suppose there exists a vector $|0\rangle \in V$ such that $T|0\rangle=0$. Show that
(a) $a(z)|0\rangle \in V[[z]]$, so we can define $V \ni a:=\left.a(z)|0\rangle\right|_{z=0}$.
(b) $a(z)|0\rangle=e^{z T} a$.
(c) Deduce that if $a=0$ then $a(z)|0\rangle=0$.
2. Exercise. Let V be a vector space and a, b, c be quantum fields. Define the n-th product of fields to be:

$$
\left(a_{(n)} b\right)(w)=\operatorname{res}_{z}\left(i_{|z|>|w|}(z-w)^{n} a(z) b(w)-(-1)^{a b} i_{|w|>|z|}(z-w)^{n} b(w) a(z)\right)
$$

Prove
(a) $a_{(n)} b \in \mathcal{F}(V)$.
(b) If a, b are translation covariant then $\partial_{z} a(z)$ and $a_{(n)} b$ are translation covariant.
(c) if a, b, c are pairwise local then $a_{(n)} b$ and c are a local pair.
(d) Show that $\partial_{w} a(w)=\left(a_{(-2)} \operatorname{Id}_{V}\right)(w)$, deduce that if a, b is a local pair then $\partial_{z} a(z), b(z)$ is a local pair
3. Exercise. Let V be a vertex algebra. Consider the quotient $\mathfrak{g}:=V((t)) / \sim$ where the equivalence relation is defined by $T a \otimes f(t) \sim-a \otimes f^{\prime}(t)$. Define the bracket

$$
\left[a \otimes t^{m}, b \otimes t^{n}\right]=\sum_{j \geq 0}\binom{m}{j}\left(a_{(j)} b\right) \otimes t^{m+n-j}
$$

Show that \mathfrak{g} with this bracket is a Lie (super)algebra. Notice that we do not need the whole structure of vertex algebra but just the positive products $a_{(j)} b$ with $j \geq 0$.
4. Exercise. Let \mathscr{L} be a Lie algebra over a commutative algebra \mathscr{O}, define $\mathscr{L}^{*}:=\mathcal{H o m}_{\mathscr{O}}(\mathscr{L}, \mathscr{O})$ the dual \mathscr{O}-module. Let $\mathscr{A}:=\operatorname{Sym}_{\mathscr{O}} L^{*}[-1]$ this is naturally a \mathbb{Z}-graded commutative (super) algebra. The Lie algebra \mathscr{L} acts on \mathscr{L}^{*} via the adjoint action and by the Leibniz rule we have an action of \mathscr{L} on \mathscr{A} by derivations of the commutative algebra structure. Recall the dgla $L_{\dagger}:=\operatorname{cone}\left(i d_{L}\right)$ from Exercise 3(b) in the previous homework.
(a) Forgetting about the differential of L_{\dagger} (that is consider L_{\dagger} as a \mathbb{Z}-graded Lie superalgebra), show that the action of L on \mathscr{A} extends to an action of L_{\dagger}. [Hint: the copy $L[1] \subset L_{\dagger}$ in degree -1 acts by contractions.
(b) Show that there exists a differential $\delta: \mathscr{A} \rightarrow \mathscr{A}[-1]$ odd of degree 1 such that $\delta^{2}=0$ such that the action of L_{\dagger} on \mathscr{A} is compatible with the differentials, namely \mathscr{A} is a commutative dga with an actions by derivations of the dgla L_{\dagger}. [Hint: read the next exercise]
5. Exercise. Think about how to state the previous exercise when \mathscr{O} is the algebra of functions on a space, \mathscr{L} is the (Lie) algebra of vector fields on this space and \mathscr{A} is the de Rham complex of that space. Deduce that (b) above is equivalent to Cartan's magic formula

