HOMEWORK 3

- 1. **Exercise.** Let V be a vector space and $\mathcal{F}(V) := \operatorname{Hom}_k(V, V((t)))$ be the space of quantum fields in V. Let $T \operatorname{End}(V)$ be an even endomorphism and let $a(z)\mathcal{F}(V)$ be translation covariant, that is $[T, a(z)]\partial_z a(z)$. Suppose there exists a vector $|0\rangle \in V$ such that $T|0\rangle = 0$. Show that
 - (a) $a(z)|0\rangle \in V[[z]]$, so we can define $V \ni a := a(z)|0\rangle|_{z=0}$.
 - (b) $a(z)|0\rangle = e^{zT}a$.
 - (c) Deduce that if a = 0 then $a(z)|0\rangle = 0$.
- 2. **Exercise.** Let V be a vector space and a, b, c be quantum fields. Define the n-th product of fields to be:

$$(a_{(n)}b)(w) = \operatorname{res}_z \Big(i_{|z| > |w|} (z-w)^n a(z)b(w) - (-1)^{ab} i_{|w| > |z|} (z-w)^n b(w)a(z) \Big).$$

Prove

- (a) $a_{(n)}b \in \mathcal{F}(V)$.
- (b) If a, b are translation covariant then $\partial_z a(z)$ and $a_{(n)}b$ are translation covariant.
- (c) if a, b, c are pairwise local then $a_{(n)}b$ and c are a local pair.
- (d) Show that $\partial_w a(w) = (a_{(-2)} \operatorname{Id}_V)(w)$, deduce that if a, b is a local pair then $\partial_z a(z), b(z)$ is a local pair
- 3. **Exercise.** Let V be a vertex algebra. Consider the quotient $\mathfrak{g} := V((t))/\sim$ where the equivalence relation is defined by $Ta \otimes f(t) \sim -a \otimes f'(t)$. Define the bracket

$$[a \otimes t^m, b \otimes t^n] = \sum_{i>0} \binom{m}{j} (a_{(j)}b) \otimes t^{m+n-j}.$$

Show that \mathfrak{g} with this bracket is a Lie (super)algebra. Notice that we do not need the whole structure of vertex algebra but just the positive products $a_{(j)}b$ with $j \geq 0$.

- 4. **Exercise.** Let \mathscr{L} be a Lie algebra over a commutative algebra \mathscr{O} , define $\mathscr{L}^* := \mathcal{H}om_{\mathscr{O}}(\mathscr{L}, \mathscr{O})$ the dual \mathscr{O} -module. Let $\mathscr{A} := \operatorname{Sym}_{\mathscr{O}} L^*[-1]$ this is naturally a \mathbb{Z} -graded commutative (super) algebra. The Lie algebra \mathscr{L} acts on \mathscr{L}^* via the adjoint action and by the Leibniz rule we have an action of \mathscr{L} on \mathscr{A} by derivations of the commutative algebra structure. Recall the dgla $L_{\dagger} := cone(id_L)$ from Exercise 3(b) in the previous homework.
 - (a) Forgetting about the differential of L_{\uparrow} (that is consider L_{\uparrow} as a \mathbb{Z} -graded Lie superalgebra), show that the action of L on \mathscr{A} extends to an action of L_{\uparrow} . [Hint: the copy $L[1] \subset L_{\uparrow}$ in degree -1 acts by contractions.
 - (b) Show that there exists a differential $\delta: \mathscr{A} \to \mathscr{A}[-1]$ odd of degree 1 such that $\delta^2 = 0$ such that the action of L_{\dagger} on \mathscr{A} is compatible with the differentials, namely \mathscr{A} is a commutative dga with an actions by derivations of the dgla L_{\dagger} . [Hint: read the next exercise]
- 5. **Exercise.** Think about how to state the previous exercise when \mathscr{O} is the algebra of functions on a space, \mathscr{L} is the (Lie) algebra of vector fields on this space and \mathscr{A} is the de Rham complex of that space. Deduce that (b) above is equivalent to Cartan's magic formula

1

Date: Due: April 1st.