HOMEWORK 2

1. Exercise.

- (a) Let A be a \mathbb{Z} -graded associative super algebra such that the $\mathbb{Z}/2\mathbb{Z}$ grading is induced from the \mathbb{Z} -grading. Let $\mathfrak{g} = A$ as a graded vector superspace with the bracket defined by $[a,b] = ab (-1)^{ab}ba$. Show that \mathfrak{g} is naturally a \mathbb{Z} -graded Lie superalgebra.
- (b) Let V be a \mathbb{Z} graded super vector space such that the $\mathbb{Z}/2\mathbb{Z}$ grading is induced from the \mathbb{Z} -grading. Show that $\mathfrak{gl}(V) = \operatorname{End}(V)$ is naturally a \mathbb{Z} -graded Lie superalgebra.
- (c) Let A as in (a) be also (super)commutative. Show that $Der(A, A) \subset \mathfrak{gl}(A)$ is a \mathbb{Z} -graded sub Lie superalgebra. Where did you use supercommutativity?
- 2. **Exercise.** A little bit more generally, Let us define first a dga. That is A is a \mathbb{Z} graded associative superalgebra (the $\mathbb{Z}/2\mathbb{Z}$ grading does not need to be compatible with the \mathbb{Z} -grading). Denote by A[1] the vector space A with simultaneous shifts on the \mathbb{Z} and $\mathbb{Z}/2\mathbb{Z}$ gradings. That is $A[1] = k[1] \otimes A$, where k[1] is an odd copy of the field k put in degree -1. A is endowed with an odd derivation of degree 1, that is $\delta : A \to A[1]$ preserves degrees and satisfies $\delta(ab) = (\delta a)b + (-1)^a a \delta b$ for all $a, b \in A$. We require $\delta^2 = 0$.

Similarly define a dgla \mathfrak{g} as a \mathbb{Z} -graded Lie superalgebra (the $\mathbb{Z}/2\mathbb{Z}$ grading does not need to be compatible with the \mathbb{Z} -grading) endowed with a degree 1 odd derivation δ , that is $\delta[a,b] = [\delta a,b] + (-1)^a[a,\delta b]$. We require $\delta^2 = 0$.

Finally define a complex as a \mathbb{Z} -graded supervector space (the $\mathbb{Z}/2\mathbb{Z}$ grading does not need to be compatible with the \mathbb{Z} -grading) endowed with an odd degree 1 map δ , that is $\delta: V \to V[1]$ such that $\delta^2 = 0$. Equivalently, a complex is a \mathbb{Z} -graded vector superspace with an action of the commutative Lie superalgebra k[-1].

- (a) Show that if A is a dga, then A^{Lie} (that is A with the usual commutator) is a dgla.
- (b) Show that if V is a complex then $\operatorname{End}_k(V)$ is a dgla.
- (c) Show that if A is a dga then $\operatorname{Der}(A,A)$ is a dgla [Hint. Notice that if $a \in A$ has \mathbb{Z} -degree k and $\mathbb{Z}/2\mathbb{Z}$ degree \bar{l} then $\operatorname{ad}(a) \in \operatorname{End}(A)$ is a derivation of \mathbb{Z} degree k and $\mathbb{Z}/2\mathbb{Z}$ degree \bar{l} .
- 3. **Exercise.** Even more generally a \mathbb{Z} graded superalgebra A is said to be *left symmetric* if it satisfies

$$(ab)c - a(bc) = (-1)^{ab} \Big((ba)c - b(ac) \Big).$$

Show that A^{Lie} with the usual commutator $[a,b] = ab - (-1)^{ab}ba$ is a \mathbb{Z} -graded Lie superalgebra. If A is endowed with a differential δ as before, so is A^{Lie} .

4. **Exercise.** Let $T: V \to W$ be a map of complexes. That is $T\delta_V = \delta_W T$ and T preserves degrees. We define the complex cone $(T) = V[1] \oplus W$ with the differential given by

$$\delta_{\text{cone}(T)} = \begin{pmatrix} \delta_{V[1]} & 0 \\ T[1] & \delta_{W} \end{pmatrix}$$

- (a) Show that cone(T) is indeed a complex, that is $\delta^2 = 0$.
- (b) If $\varphi : \mathfrak{g} \to \mathfrak{g}'$ is a morphism of dgla's (that is a map of complexes preserving the brackets) then show that $\operatorname{cone}(T)$ is naturally a dgla. Let \mathfrak{g} be a usual Lie algebra concentrated in degree 0, describe $\operatorname{cone}(id)$.

1

Date: Due: March 25th 2014.

5. Exercise. Let $\mathfrak{g} = \mathfrak{g}_{\bar{1}} = \mathbb{C}$ be the one dimensional purely odd commutative Lie superalgebra. Let $\mathfrak{g}(t)$ be the corresponding infinite dimensional commutative super Lie algebra. Let $F(\mathfrak{g})$ $\mathfrak{g}((t)) \oplus \mathbb{C}K$ be its central extension as follows, choose a skew-supersymmetric bilinear pairing on \mathfrak{g} given by (a,b)=ab and define the bracket

$$[a \otimes f(t), b \otimes g(t)] = (a, b) \oint f(t)g(t)dt$$

while K is central. Show that $F(\mathfrak{g})$ is an infinite dimensional super Lie algebra. Define the basis $\left\{\psi_n=1\otimes t^{n-1/2},K\right\}_{n\in 1/2+\mathbb{Z}}$ and show that $F(\mathfrak{g})$ is naturally a $\frac{1}{2}\mathbb{Z}$ -graded super Lie algebra.

6. Exercise. Let $F(\mathfrak{g})$ be the super Lie algebra of the previous exercise. Consider its Fock representation V, that is a representation with a vector $|0\rangle$ such that $\varphi_n|0\rangle = 0$ for all n > 0 and $K|0\rangle = |0\rangle$. Define the operators

$$L_m = -\frac{1}{2} \sum_{k \in 1/2 + \mathbb{Z}} \left(k + \frac{1}{2} \right) \varphi_k \varphi_{m-k}, \qquad m \in \mathbb{Z}.$$

Show that they produce a representation of the Virasoro Lie algebra of central charge c = 1/2.

7. Exercise. We saw in the previous lecture that given a commutative Lie algebra $\mathfrak{g} = \mathbb{C}$ we would attach a representation of the Virasoro Lie algebra of central charge 1. Show that if \mathfrak{g} is a two dimensional commutative Lie algebra then we obtain a representation of the Virasoro Lie algebra of central charge c=2. If $\mathfrak g$ is a two dimensional commutative purely odd Lie algebra we can use this to produce a representation of the Virasoro Lie algebra of which central charge? Compare this construction with the previous one in exercise 3.