HOMEWORK 1

1. Exercise. Correct all the statements in the exercises below before solving them.
2. Exercise. Let \mathfrak{g} be a finite dimensional Lie algebra over a field k and let $(,) \in \mathfrak{g}^{*} \otimes \mathfrak{g}^{*}$. Consider the field $\mathscr{K}=k((t))$ and the ring $\mathscr{O}=k[[t]] \subset \mathscr{K}$. On the vector space $\hat{\mathfrak{g}}:=\mathfrak{g} \otimes_{k} \mathscr{K} \oplus k$ define the following bilinear operation

$$
[a \otimes f, b \otimes g]=[a, b] \otimes f g+(a, b) \frac{1}{2 \pi i} \oint f d g, \quad[k, \hat{\mathfrak{g}}]=0, \quad a, b \in \mathfrak{g}, f, g \in \mathscr{K},
$$

Here the symbol $\frac{1}{2 \pi i} \oint f(t) d t$ means the coefficient of t^{-1}.
(a) Show that $\hat{\mathfrak{g}}$ with this bracket is a Lie algebra if and only if $(,) \in\left(\operatorname{Sym}^{2} \mathfrak{g}^{*}\right)^{\mathfrak{g}}$ (ie. the bilinear form is symmetric and invariant).
(b) Show that $\hat{\mathfrak{g}}_{+}:=\mathfrak{g} \otimes \mathscr{O} \oplus k$ and $\hat{\mathfrak{g}}_{-}:=\mathfrak{g} \otimes t^{-1} k\left[t^{-1}\right]$ are subalgebras of $\hat{\mathfrak{g}}$.
3. Exercise. Let $k=\mathbb{C}$.
(a) Show that $k((t))$ is a field.
(b) Let $k(t, w)$ be the field of fractions of $k[t, w]$ and let $k((t, w))$ be the field of fractions of $k[[t, w]]$. Define

$$
k((t))((w)) \stackrel{i_{|z|>|w|}}{\longleftrightarrow} k((t, w)) \xrightarrow{i_{|w|>|z|}} k((w))((t))
$$

by expanding a series in $k((t, w))$ in the respective domain. Show that each of these maps is an extension of fields.
(c) Notice that $k((t))((w)) \subset k\left[\left[t, t^{-1}, w, w^{-1}\right]\right] \supset k((w))((t))$. Show that

$$
k((t))((w)) \cap k((w))((t))=k[[t, w]]\left[t^{-1}, w^{-1}\right] .
$$

(d) In particular, let $(t-w)^{-1} \in k((t, w)) \backslash k[[t, w]]\left[t^{-1}, w^{-1}\right]$ and define

$$
\delta(t, w)=i_{|z|>|w|}(t-w)^{-1}-i_{|w|>|z|}(t-w)^{-1} \in k\left[\left[t, t^{-1}, w, w^{-1}\right]\right] .
$$

Show that $\left(\partial_{t}+\partial_{w}\right) \delta=(t-w) \delta=0$.
4. Exercise. Let $\mathfrak{g}=k$ be a one dimensional commutative algebra with generator α and let (,) be defined so that $(\alpha, \alpha)=1$. Consider the algebra $\hat{\mathfrak{g}}$ of Exercise 2 and denote $\alpha_{n}:=\alpha \otimes t^{n}$. This algebra is the Heisenberg Lie algebra.
(a) Show that the projection $\pi: \hat{\mathfrak{g}}_{+} \rightarrow k$ is a morphism of Lie algebras (ie. $\mathfrak{g} \otimes \mathscr{O} \subset \hat{\mathfrak{g}}_{+}$is an ideal.
(b) Consider the Fock representation of $\hat{\mathfrak{g}}$ constructed as follows. Start with the standard representation of $k=\mathfrak{g l}(1)$ on k, compose it with π to obtain a 1 dimensional representation of $\hat{\mathfrak{g}}_{+}$. Define

$$
V:=U(\hat{\mathfrak{g}}) \otimes_{U\left(\hat{\mathfrak{g}}_{+}\right.} k .
$$

Show that as vector spaces $V \simeq U\left(\hat{\mathfrak{g}}_{-}\right)$.
(c) Abuse notation and think of $\alpha_{n} \in \operatorname{End}(V)$. For each pair n, m define

$$
\operatorname{End}(V) \ni: a_{n} a_{m}:= \begin{cases}a_{n} a_{m} & n<0 \\ a_{m} a_{n} & n \geq 0\end{cases}
$$

Now define for each $n \in \mathbb{Z}$

$$
L_{m}=\frac{1}{2} \sum_{n \in \mathbb{Z}}: \alpha_{n} \alpha_{n-m}:
$$

Prove that L_{m} is a well defined endomorphism of V and moreover that

$$
\begin{equation*}
\left[L_{m}, L_{n}\right]=(m-n) L_{m+n}+\delta_{m,-n} \frac{m^{3}-m}{12} \operatorname{Id}_{V} \tag{0.1}
\end{equation*}
$$

(d) For any $\hat{\mathfrak{g}}$ as in Exercise 2 we will say that its module W is smooth if given any vector $w \in W$ and $a \in \mathfrak{g}$ we have $a_{n} w=0$ for $n \gg 0$. Show that for any smooth representation of the Heisenberg algebra the operators L_{m} defined above are well defined. Is equation (0.1) still true?

Note however that L_{m} so defined does not belong to $U(\hat{\mathfrak{g}})$.

5. Exercise.

(a) Consider $\hat{\mathfrak{g}}$ as in Exercise 2 and for each $a \in \mathfrak{g}$ define

$$
a(z)=\sum_{n \in \mathbb{Z}} a_{n} z^{-1-n}=\sum_{n \in \mathbb{Z}} a \otimes t^{n} z^{-1-n} .
$$

Prove that $(z-w)^{2}[a(z), b(w)]=0$ for all $a, b \in \mathfrak{g}$.
(b) Define $L(z)=\sum_{n \in \mathbb{Z}} L_{n} z^{-2-n}$ where L_{n} are the endomorphisms of the previous exercise. Show that

$$
(z-w)^{3}[L(z), L(w)] \neq 0, \quad(z-w)^{4}[L(z), L(w)]=0
$$

