HOMEWORK 1

- 1. Exercise. Correct all the statements in the exercises below before solving them.
- 2. **Exercise.** Let \mathfrak{g} be a finite dimensional Lie algebra over a field k and let $(,) \in \mathfrak{g}^* \otimes \mathfrak{g}^*$. Consider the field $\mathscr{K} = k((t))$ and the ring $\mathscr{O} = k[[t]] \subset \mathscr{K}$. On the vector space $\hat{\mathfrak{g}} := \mathfrak{g} \otimes_k \mathscr{K} \oplus k$ define the following bilinear operation

$$[a \otimes f, b \otimes g] = [a, b] \otimes fg + (a, b) \frac{1}{2\pi i} \oint f dg, \quad [k, \hat{\mathfrak{g}}] = 0, \qquad a, b \in \mathfrak{g}, \ f, g \in \mathcal{K},$$

Here the symbol $\frac{1}{2\pi i} \oint f(t)dt$ means the coefficient of t^{-1} .

- (a) Show that $\hat{\mathfrak{g}}$ with this bracket is a Lie algebra if and only if $(,) \in (\operatorname{Sym}^2 \mathfrak{g}^*)^{\mathfrak{g}}$ (ie. the bilinear form is symmetric and invariant).
- (b) Show that $\hat{\mathfrak{g}}_+ := \mathfrak{g} \otimes \mathscr{O} \oplus k$ and $\hat{\mathfrak{g}}_- := \mathfrak{g} \otimes t^{-1}k[t^{-1}]$ are subalgebras of $\hat{\mathfrak{g}}$.
- 3. Exercise. Let $k = \mathbb{C}$.
 - (a) Show that k(t) is a field.
 - (b) Let k(t, w) be the field of fractions of k[t, w] and let k(t, w) be the field of fractions of k[t, w]. Define

$$k((t))((w)) \xleftarrow{i_{|z|>|w|}} k((t,w)) \xrightarrow{i_{|w|>|z|}} k((w))((t))$$

by expanding a series in k((t, w)) in the respective domain. Show that each of these maps is an extension of fields.

(c) Notice that $k((t))((w)) \subset k[[t,t^{-1},w,w^{-1}]] \supset k((w))((t))$. Show that

$$k((t))((w)) \cap k((w))((t)) = k[[t, w]][t^{-1}, w^{-1}].$$

(d) In particular, let $(t-w)^{-1} \in k((t,w)) \setminus k[[t,w]][t^{-1},w^{-1}]$ and define

$$\delta(t,w) = i_{|z|>|w|}(t-w)^{-1} - i_{|w|>|z|}(t-w)^{-1} \in k[[t,t^{-1},w,w^{-1}]].$$

Show that $(\partial_t + \partial_w)\delta = (t - w)\delta = 0$.

- 4. **Exercise.** Let $\mathfrak{g} = k$ be a one dimensional commutative algebra with generator α and let (,) be defined so that $(\alpha, \alpha) = 1$. Consider the algebra $\hat{\mathfrak{g}}$ of Exercise 2 and denote $\alpha_n := \alpha \otimes t^n$. This algebra is the *Heisenberg* Lie algebra.
 - (a) Show that the projection $\pi: \hat{\mathfrak{g}}_+ \to k$ is a morphism of Lie algebras (ie. $\mathfrak{g} \otimes \mathscr{O} \subset \hat{\mathfrak{g}}_+$ is an ideal
 - (b) Consider the Fock representation of $\hat{\mathfrak{g}}$ constructed as follows. Start with the standard representation of $k = \mathfrak{gl}(1)$ on k, compose it with π to obtain a 1 dimensional representation of $\hat{\mathfrak{g}}_+$. Define

$$V := U(\hat{\mathfrak{g}}) \otimes_{U(\hat{\mathfrak{g}}_+} k.$$

Show that as vector spaces $V \simeq U(\hat{\mathfrak{g}}_{-})$.

Date: Due: March 18th 2014.

(c) Abuse notation and think of $\alpha_n \in \text{End}(V)$. For each pair n, m define

$$\operatorname{End}(V) \ni: a_n a_m := \begin{cases} a_n a_m & n < 0 \\ a_m a_n & n \ge 0 \end{cases}$$

Now define for each $n \in \mathbb{Z}$

$$L_m = \frac{1}{2} \sum_{n \in \mathbb{Z}} : \alpha_n \alpha_{n-m} :$$

Prove that L_m is a well defined endomorphism of V and moreover that

$$[L_m, L_n] = (m-n)L_{m+n} + \delta_{m,-n} \frac{m^3 - m}{12} \operatorname{Id}_V.$$
(0.1)

(d) For any $\hat{\mathfrak{g}}$ as in Exercise 2 we will say that its module W is smooth if given any vector $w \in W$ and $a \in \mathfrak{g}$ we have $a_n w = 0$ for $n \gg 0$. Show that for any smooth representation of the Heisenberg algebra the operators L_m defined above are well defined. Is equation (0.1) still true?

Note however that L_m so defined does not belong to $U(\hat{\mathfrak{g}})$.

5. Exercise.

(a) Consider $\hat{\mathfrak{g}}$ as in Exercise 2 and for each $a \in \mathfrak{g}$ define

$$a(z) = \sum_{n \in \mathbb{Z}} a_n z^{-1-n} = \sum_{n \in \mathbb{Z}} a \otimes t^n z^{-1-n}.$$

Prove that $(z-w)^2[a(z),b(w)]=0$ for all $a,b\in\mathfrak{g}$. (b) Define $L(z)=\sum_{n\in\mathbb{Z}}L_nz^{-2-n}$ where L_n are the endomorphisms of the previous exercise. Show that

$$(z-w)^3[L(z), L(w)] \neq 0,$$
 $(z-w)^4[L(z), L(w)] = 0.$