INTRODUCTION TO LIE ALGEBRAS PROBLEM SET 2

IMPA

Exercise 1. Let $I \subset \mathfrak{g}$ be an ideal. Prove that any member of the derived and central sequence of I is also an ideal of \mathfrak{g} .

Exercise 2. Prove that $\mathfrak{sl}_2(\mathbb{F})$ is Nilpotent if the characteristic of \mathbb{F} is 2.

Exercise 3. Let $A, B \in \mathfrak{gl}(V)$ be such that [A, B] = 0. Show that $(A + B)_s = A_s + B_s$ and $(A + B)_n = A_n + B_n$. Show first that if A, B are semisimple (resp. nilpotent) then A + B is semisimple (resp. nilpotent).

Exercise 4. Let $A, B, C \in \mathfrak{gl}(V)$, check that tr([A, B]C) = tr(A[B, C]).

Exercise 5. Let $\mathfrak{g} \subset \mathfrak{gl}(V)$ be a solvable Lie subalgebra. Show that $\operatorname{tr}(AB) = 0, \forall A \in [\mathfrak{g}, \mathfrak{g}], B \in \mathfrak{g}$.

Exercise 6. Prove that the Killing form of a Nilpotent Lie algebra is zero.

Exercise 7. Consider the standard basis of $\mathfrak{sl}_2(\mathbb{F})$. Compute its dual with respect to the Killing form.

Exercise 8. If A and B are commuting nilpotent operators, show that $e^{A+B} = e^A e^B$.

Date: Due Sept 4th 2014.

1