## Homework 6

Due 24/5/2018*

1 Exercise. Show that 29 is not prime in $\mathbb{Z}[\sqrt{-5}]$.
2 Exercise. Show that in a principal ideal domain given $a, b \in R$, their $\operatorname{gcd} d$ exists and that there exists $p, q \in R$ such that $p a+q b=d$. Find a counterexample for the last statement in an UFD.

3 Exercise. Define and prove existence and uniqueness (modulo units) of the least common multiple in a PID.

4 Exercise. prove that $x w-z y$ is irreducible in $\mathbb{C}[x, y, z, w]$.
5 Exercise. Let $f \in \mathbb{C}[x, y]$ be irreducible and suppose that the variety $V(g)$ of another polynomial $g$ contains $V(f)$. Show that $f$ divides $g$.

6 Exercise. Prove that two integer polynomials are relatively prime in $\mathbb{Q}[x]$ if an only if the ideal they generate in $\mathbb{Z}[x]$ contains an integer.

7 Exercise. Find a ring $R$ (not an integral domain) and elements $a, b \in R$ that are associate and do not differ by a unit. (This was stated incorrectly in class!).

[^0]
[^0]:    *Starred exercises are optional

