Homework 6

Due 24/5/2018*

- **1 Exercise**. Show that 29 is not prime in $\mathbb{Z}[\sqrt{-5}]$.
- **2 Exercise**. Show that in a principal ideal domain given $a, b \in R$, their gcd d exists and that there exists $p, q \in R$ such that pa + qb = d. Find a counterexample for the last statement in an UFD.
- **3 Exercise**. Define and prove existence and uniqueness (modulo units) of the *least common multiple* in a PID.
- **4 Exercise**. prove that xw zy is irreducible in $\mathbb{C}[x, y, z, w]$.
- **5 Exercise**. Let $f \in \mathbb{C}[x, y]$ be irreducible and suppose that the variety V(g) of another polynomial g contains V(f). Show that f divides g.
- **6 Exercise**. Prove that two integer polynomials are relatively prime in $\mathbb{Q}[x]$ if an only if the ideal they generate in $\mathbb{Z}[x]$ contains an integer.
- 7 Exercise. Find a ring R (not an integral domain) and elements $a, b \in R$ that are associate and do not differ by a unit. (This was stated incorrectly in class!).

^{*}Starred exercises are optional