Homework 5

Due 15/5/2018*

All rings are commutative.

- 1 Exercise. Determine all rings that contain the zero ring as a subring.
- **2 Exercise**. Prove that if $R \simeq R'$ then $R[x] \simeq R'[x]$. Can you relate the group of automorphisms of R with that of R[x]?
- **3 Exercise**. determine all ideals of the ring \mathbb{R} [[t]].
- **4 Exercise**. Let F be a field of characteristic different than 2. Show that $F[x]/(x^2)$ is not isomorphic to $F[x]/(x^2-1)$.
- 5 Exercise. Let R be an integral domain, check that R[x] is an integral domain
- **6 Exercise.** Let R be a ring and $I \subset R$ an ideal such that every element of $R \setminus I$ is a unit of R. Prove that I is a maximal ideal and that R has no other maximal ideal. Can you find such an example where moreover there are other ideals different than 0, I or R?
- **7 Exercise**. Find a maximal ideal of $\mathbb{R}[x, y]$ that is not generated by (x a, y b) for $a, b \in \mathbb{R}$.

^{*}Starred exercises are optional