Homework 4

Due 26/4/2018*

1 Exercise. Let G be a finite group. Define a ring $\mathbb{Z}[G]$ as the free Abelian group with basis $\left\{e_g\right\}_{g\in G}$ and multiplication

$$e_g \cdot e_h = e_{g \cdot h}.$$

Define another ring $\mathbb{Z}'[G]$ as the set of functions $G \to \mathbb{Z}$ with the following operations. Given two functions $\psi, \varphi \in \mathbb{Z}'[G]$ we define

$$(\psi+\varphi)(g)=\psi(g)+\varphi(g), \qquad (\psi\cdot\varphi)(g)=\sum_{h\in G}\psi(h)\cdot\varphi(h^{-1}\cdot g).$$

- a) Show that $\mathbb{Z}'[G]$ is a ring.
- b) Show that $\mathbb{Z}[G] \simeq \mathbb{Z}[G]$.
- **2 Exercise.** Prove that the maximal ideals of \mathbb{Z} are principal ideals generated by prime integers.
- 3 Exercise. Let I, J be ideals in R such that I + J = R. Show that $IJ = I \cap J$.
- **4 Exercise**. Let *R* be the ring of continuous functions $[0, 1] \to \mathbb{R}$.
 - a) Prove that f is a zero divisor if and only if there exists an open interval inside [0, 1] such that f vanishes in this interval.
 - b) Find the idempotent and nilpotent elements of R.
- **5 Exercise**. Prove that the map $\mathbb{Z} \to \mathbb{Z}_3 \times \mathbb{Z}_5$ sending x to the pair $([x]_3, [x]_5)$ where $[x]_p$ is the reduction mod p, is a surjective homomorphism and find its kernel.
- 6 Exercise. Does the category of rings have an initial and final object?

^{*}Starred exercises are optional