Homework 3

Due 3/4/2018*

1 Exercise. Prove that in any group the orders of *ab* and *ba* are equal.

2 Exercise. Let $H \subset G$ be the subgroup generated by two elements $a, b \in G$ (that is the smallest subgroup of G containing both a, b). Show that if ab = ba then H is Abelian.

3 Exercise. Prove that every subgroup of index 2 is normal and find a subgroup of index 3 that is not normal.

In the following exercises, let k be a field, $GL_n(k)$ is the group of invertible $n \times n$ matrices with entries in k. $SL_n(k)$ is the subgroup of matrices with determinant 1. $PGL_n(k)$ and $PSL_n(k)$ are the respective quotient groups by the central subgroups of matrices which are multiple of the identity.

4 Exercise. Prove that the group $GL_2(\mathbb{F}_2)$ of two by two invertible matrices with entries in the field with two elements \mathbb{F}_2 is isomorphic to the symmetric group S_3 .

5 Exercise*. Prove that the group $PSL_2(\mathbb{F}_7)$ is isomorphic to the group $GL_3(\mathbb{F}_2)$. If you can't solve this in the first few hours, just take a look at https://math.stackexchange.com/questions/1401

6 Exercise. Let S be a set with a right action of a group G. Define the subset

$$H = \cap_{s \in S} G_s$$
.

Show that H is a normal subgroup of G.

7 Exercise. Let G be the group of rotational symmetries of a cube (defined the same way as for the tetrahedron in the first homework). Find the stabilizer of a big diagonal line.

8 Exercise. The quaternion group H is a group of order 8 with elements

$$H = \{\pm 1, \pm i, \pm j, \pm k\},\$$

And multiplication as follows:

$$i^2 = j^2 = j^3 = -1,$$
 $ij = k,$ $jk = i,$ $ki = j.$

where 1 is the identity of the group and the usual rule of signs for multiplication is used (eg. (-i)j = -(ij) = -k).

Compute Aut H/InnH.

9 Exercise. Consider $PGL_3(\mathbb{F}_2)$ acting on $\mathbb{P}^2_{\mathbb{F}_2}$. Find the stabilizer of a point and a line.

^{*}Starred exercises are optional