
3 Groups
In this lecture we will study the basic properties of groups, we will define them following [1] and then
interpret our results in the language of the previous lectures.

3.1 Definition (Alternative definition). A group is a set 𝑆 together with a function 𝑆 × 𝑆 → 𝑆 (
𝑠, 𝑡 ↦ 𝑠 ⋅ 𝑡), called the product and an element 𝑒 ∈ 𝑆 called the identity. satisfying the following axioms

a) 𝑒 ⋅ 𝑡 = 𝑡 ⋅ 𝑒 = 𝑡 for all 𝑡 ∈ 𝑆 .

b) 𝑠 ⋅ (𝑡 ⋅ 𝑟) = (𝑠 ⋅ 𝑡) ⋅ 𝑟 for all 𝑠, 𝑡, 𝑟 ∈ 𝑆 .

c) For every 𝑠 ∈ 𝑆 there exists 𝑡 ∈ 𝑆 such that 𝑠 ⋅ 𝑡 = 𝑒.
3.2. Let 𝑠 ⋅ 𝑡 = 𝑒 and let 𝑠′ be such that 𝑡 ⋅ 𝑠′ = 𝑒. Then multiplying the first equation by 𝑠′ on the right
and using associativity and the identity we have

𝑠′ = (𝑠 ⋅ 𝑡) ⋅ 𝑠′ = 𝑠 ⋅ (𝑡 ⋅ 𝑠′) = 𝑠 ⋅ 𝑒 = 𝑠.

It follows that 𝑡 is both a left and right inverse to 𝑠. It will be denoted by 𝑠−1.
Similarly, if 𝑡 and 𝑡′ satisfy 𝑠 ⋅ 𝑡 = 𝑠 ⋅ 𝑡′ = 𝑒, multiplying on both sides by 𝑠 on the right, by what we

just proved we obtain 𝑡 = 𝑡′. Hence inverses are unique.

3.3. This definition is equivalent to the definition we saw before. In fact given a group 𝐺 defined as
category with one object, we let 𝑆 = Hom(∗, ∗), ⋅ be the composition of morphisms and 𝑒 = Id∗. Con-
versely, given a group 𝑆 as above, we consider the category with only one object ∗ and with morphisms
given by elements of 𝑆 . From now on when we refer to a group 𝐺 and elements 𝑔 ∈ 𝐺 I will mean
either an element of the corresponding set or a morphism in the corresponding category, understanding
that they are the same.

3.4 Definition (yet another definition). A group is a set 𝐺 together with three maps

∗ 𝑒−→ 𝐺, 𝐺 × 𝐺 ⋅−→ 𝐺, 𝐺 (⋅)−1
−−−→ 𝐺,

called the identity, the multiplication and the inverse maps. Such that the following diagrams commute:

∗ × 𝐺

𝜋2
$$II

II
II

II
II

𝑒×Id𝐺 // 𝐺 × 𝐺
⋅
��

𝐺 × ∗Id𝐺 ×𝑒oo

𝜋1
zzuuu

uu
uu
uu
u

𝐺

(3.4.1)

𝐺 × 𝐺 × 𝐺 ⋅×Id𝐺 //

Id𝐺 ×⋅
��

𝐺 × 𝐺
⋅
��

𝐺 × 𝐺 ⋅ // 𝐺

(3.4.2)

𝐺 Δ //

""F
FF

FF
FF

FF
𝐺 × 𝐺(⋅)−1×Id𝐺// 𝐺 × 𝐺

⋅
��

𝐺 × 𝐺Id𝐺 ×(⋅)−1
oo 𝐺Δoo

||xx
xx
xx
xx
x

∗ 𝑒
// 𝐺 ∗𝑒

o o

(3.4.3)

Equation (3.4.1) is equivalent to 𝑒 being the identity of the multiplication. Equation (3.4.2) is equivalent
to the associativity property and (3.4.3) is equivalent to the existence of inverses for the multiplication.
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3.5 Examples.

a) The integers with the sum (ℤ, +), the non-zero rational numbers with the product (ℚ×, ⋅), the
non-zero real numbers with the product (ℝ×, ⋅) are examples of groups. These groups are all
Abelian or commutative, in the sense that 𝑎 ⋅ 𝑏 = 𝑏 ⋅ 𝑎 for all pairs 𝑎, 𝑏 ∈ 𝐺. Notice that we need
to take out the zero from ℚ in order to obtain a group, since it does not have a (multiplicative)
inverse. In the case of ℤ, even taking out the zero we would not obtain a group since there are
no multiplicative inverses in ℤ. Similarly for the natural numbers ℕ with the addition, it is not a
group since there are no additive inverses.

b) The group of permutations of 𝑛 elements 𝑆𝑛 is a group under composition, this is the group of bi-
jective maps {1, ⋯ , 𝑛} → {1, ⋯ , 𝑛} where multiplication is the composition. More generally, for
any set 𝑆 , the set of bijective functions 𝑓 ∶ 𝑆 → 𝑆 is a group with composition as multiplication.

c) Let 𝑉 be a vector space over the field 𝑘. The set of 𝑘-linear endomorphisms of 𝑉 that are invertible
is a group with composition as the multiplication. This group is not commutative if dim 𝑉 > 1.
If we consider however all endomorphisms of 𝑉 with addition as an operation, then we obtain a
group.
Suppose that dim 𝑉 = 𝑛 (in particular that it is finite). Then choosing a basis {𝑒1, ⋯ , 𝑒𝑛} for
𝑉 we can express any linear automorphism of 𝑉 as an invertible 𝑛 × 𝑛 matrix with coefficients
in 𝑘. Conversely, any such matrix gives a linear automorphism of 𝑉 . In other words, the set of
invertible 𝑛 × 𝑛 matrices with coefficients in 𝑘 is a group with multiplication of matrices as the
operation. This group is typically denoted 𝐺𝐿𝑛(𝑘).

d) These examples generalize as follows: let 𝒞 be any category and 𝑎 an object. Consider the set

Aut(𝑎) ∶= {𝜙 ∈ Hom𝒞 (𝑎, 𝑎), 𝜙 is an isomorphism} .

Then Aut(𝑎) is a groupwith composition as the operation. Homeomorphisms of topological spaces,
diffeomorphisms of smooth varieties, etc. fall into this class.

e) The group of 3 × 3 upper triangular matrices and entries in ℝ with 1 on the diagonal is called the
(real) Heisenberg group.

3.6 Definition. A homomorphism of groups is a function 𝑓 ∶ 𝐺 → 𝐻 such that 𝑓(𝑔 ⋅ 𝑔′) = 𝑓(𝑔) ⋅ 𝑓 (𝑔′).
For a homomorphism 𝑓 it follows that 𝑓(𝑒𝐺) = 𝑒𝐻 . Indeed we have

𝑓(𝑒) = 𝑓(𝑒 ⋅ 𝑒) = 𝑓(𝑒) ⋅ 𝑓 (𝑒),

and multiplying by 𝑓(𝑒)−1 on both sides we obtain 𝑓(𝑒𝐺) = 𝑒𝐻 . It follows that the notion of homomor-
phism we have thus defined coincides with our previous definition as a functor.

3.7 Example. A subset 𝐻 ⊂ 𝐺 of a group 𝐺 which is closed under the product and by taking inverses, is
called a subgroup. For example, the set of all even integers is a subgroup of the integers with the addition.
The set of all 𝑛-th roots of unit of ℂ, that is the set

{𝜁 ∈ ℂ |𝜁𝑛 = 1} ,

is a subgroup of (ℂ×, ⋅). In these cases, the inclusion 𝜄 ∶ 𝐻 ↪ 𝐺 is a homomorphism of groups.

3.8. Let 𝑓 ∶ 𝐻 → 𝐺 be a morphism of groups. Then

im(𝑓) ∶= 𝑓(𝐻) ⊂ 𝐺, ker(𝑓 ) ∶= 𝑓 −1(𝑒𝐺) ⊂ 𝐻,
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are subgroups. Indeed, for 𝑎′ = 𝑓(𝑎), 𝑏′ = 𝑓(𝑏) we have 𝑎′ ⋅ 𝑏′ = 𝑓(𝑎 ⋅ 𝑏) hence im(𝑓) is closed under
products. Similarly from 𝑒𝐺 = 𝑓(𝑒𝐻 ) = 𝑓(𝑎 ⋅ 𝑎−1) = 𝑓(𝑎) ⋅ 𝑓 (𝑎−1) it follows that im(𝑓) is closed under
taking inverses.

As for ker(𝑓 ) we notice that 𝑒𝐻 ∈ ker(𝑓) since 𝑓(𝑒𝐻 ) = 𝑒𝐺, and if 𝑎⋅𝑏 ∈ ker(𝑓 ) we have 𝑓(𝑎)⋅𝑓 (𝑏) =
𝑓(𝑎 ⋅ 𝑏) = 𝑒𝐺 ⋅ 𝑒𝐺 = 𝑒𝐺 hence ker(𝑓 ) is closed under taking products and taking inverses (consider
𝑏 = 𝑎−1).

3.9. Let 𝐺 be a group and 𝑥 ∈ 𝐺 be any element. The cyclic subgroup generated by 𝑥 is the set 𝐻 =
{⋯ , , 𝑥−2, 𝑥−1, 𝑒𝐺, 𝑥, 𝑥2, ⋯}. It is the smallest subgroup of 𝐺 containing 𝑥. There might be repetitions
in this list. For example if there exists 𝑛 > 0 such that 𝑥𝑛 = 𝑒𝐺 then we will have 𝑥𝑘𝑛 = 𝑒𝐺 for every
𝑘 ∈ ℤ. Notice that if there are two different powers in this list that are equal, say 𝑥𝑚 = 𝑥𝑙 for some
𝑚 ≠ 𝑙 ∈ ℤ. Then we will have 𝑥𝑚−𝑙 = 𝑒𝐺 and we are in the situation above. On the other hand, all
the elements in that list are different we will call the group the “infinite cyclic group”. Suppose that our
subgroup 𝐻 is not the infinite cyclic group. Then we have

Lemma. The set 𝑆 = {𝑛 ∈ ℤ |𝑥𝑛 = 𝑒𝐺} is a subgroup of ℤ.

Proof. Indeed this is simply the fact that the morphism ℤ → 𝐺 given by 𝑛 ↦ 𝑥𝑛 has 𝑆 as a kernel.

On the other hand we have

Lemma. Every subgroup of ℤ is of the form 𝑛ℤ for some non-negative integer number 𝑛.

Proof. The fact that 𝑛ℤ is a subgroup follows since the morphism ℤ → ℤ, given by 𝑚 ↦ 𝑛 ⋅ 𝑚 has 𝑛ℤ
as image. Conversely, let 𝐻 be a subgroup of ℤ. There are some cases to consider, if 𝐻 = 0 then it is
of the form required for 𝑛 = 0. Conversely, there is some 0 < 𝑚 ∈ 𝐻 (pick any non-zero 𝑚 and if it’s
negative consider it’s inverse −𝑚). There exists a smallest such 𝑚, call it 𝑛. I claim that 𝐻 = 𝑛ℤ. Indeed
we have 𝑛 ∈ 𝐻 and therefore 𝐻′ ∶= 𝑛ℤ ⊂ 𝐻 since any element of 𝐻′ can be written either as

𝑛 + ⋯ + 𝑛⏟⏟⏟⏟⏟
𝑘times

, or, 𝑛 + ⋯ + 𝑛⏟⏟⏟⏟⏟
−𝑘times

.

On the other suppose that 𝐻 ⊋ 𝐻′ and let 𝑘 be a positive integer in 𝐻 and not in 𝐻′. Then since
−𝑛 ∈ 𝐻′ ⊂ 𝐻 we have {𝑘 − 𝑛 ⋅ 𝑙 |𝑙 ∈ ℤ} ⊂ 𝐻 . In particular, there exists a minimal positive integer
number 𝑟 in this list with the property 0 ≤ 𝑟 < 𝑛, namely the remainder in the division of 𝑘 by 𝑛. By our
assumptions that 𝑘 was not in 𝐻′ we have that 𝑟 > 0 and since 𝑟 < 𝑛 is in 𝐻 we reach a contradiction.

Combining these two lemmas we see that if 𝐻 is a cyclic group which is not the infinite cyclic group,
nor the trivial group {𝑒𝐺} then there exists a minimal positive integer number 𝑚 such that

𝐻 = {𝑒𝐺, 𝑥, 𝑥2, ⋯ , 𝑥𝑚−1} ,

these powers are all distinct and 𝑥𝑚 = 𝑒𝐺. This is called a cyclic group of order 𝑚.

3.10. We have a category Grp whose objects are groups and whose morphisms are homomorphisms of
groups. Here are some properties of this category:

a) The trivial group ∗ with only one element is both an initial and a final object in this category.
Indeed, given any group 𝐺 there is a unique morphism 𝜋 ∶ 𝐺 → ∗ such that 𝜋(𝑔) = ∗ for all
𝑔 ∈ 𝐺. Similarly we have a unique morphism ∗ → 𝐺 by ∗ ↦ 𝑒𝐺.
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b) Given a subgroup 𝐻 ⊂ 𝐺 then the inclusion 𝜄 ∶ 𝐻 ↪ 𝐺 is a monomorphism of groups. More
generally, for any morphism 𝜙 ∶ 𝐻 → 𝐺 the inclusion ker(𝜙) ↪ 𝐻 is a kernel in the sense of the
previous lecture (cf. Definition 2.11).

c) Given two groups 𝐺 and 𝐻 the product of sets 𝐺 × 𝐻 has a group structure defined by

(𝑔, ℎ) ⋅ (𝑔′, ℎ′) ∶= (𝑔 ⋅ 𝑔′, ℎ ⋅ ℎ′), 𝑒𝐺×𝐻 ∶= (𝑒𝐺, 𝑒𝐻 ).

The projections 𝐺 × 𝐻 → 𝐺 (resp. 𝐺 × 𝐻 → 𝐻 ) defined by (𝑔, ℎ) ↦ 𝑔 (resp. (𝑔, ℎ) ↦ ℎ) are
morphisms of groups. And by the universal property of products of sets, given any group 𝐾 (in
particular a set) with two homomorphisms 𝜋𝐺 ∶ 𝐾 → 𝐺, 𝜋𝐻 ∶ 𝐾 → 𝐻 there exists a unique
map of sets1 𝜋𝐺×𝐻 ∶ 𝐾 → 𝐺 × 𝐻 given by 𝑘 ↦ (𝜋𝐾 (𝑔), 𝜋𝐻 (ℎ)). Since each 𝜋𝐺 and 𝜋𝐻 are
homomorphisms of groups it follows that 𝜋𝐺×𝐻 is a homomorphism of groups. Indeed we have

𝜋𝐺×𝐻 (𝑘) ⋅ 𝜋𝐺×𝐻 (𝑘′) = (𝜋𝐺(𝑘), 𝜋𝐻 (𝑘)) ⋅ (𝜋𝐺(𝑘′), 𝜋𝐻 (𝑘′)) =
(𝜋𝐺 (𝑘) ⋅ 𝜋𝐺(𝑘′), 𝜋𝐻 (𝑘) ⋅ 𝜋𝐻 (𝑘′)) = (𝜋𝐺(𝑘 ⋅ 𝑘′), 𝜋𝐻 (𝑘 ⋅ 𝑘′)) = 𝜋𝐺×𝐻 (𝑘 ⋅ 𝑘′).

We have proved thus:

Lemma. The product 𝐺 × 𝐻 is a product in Grp in the sense of Example 2.5 d).

d) Coproducts exists in the category of groups and their construction uses the notion of a free product
of groups (cf. Exercise 3.28.1). In particular, products and coproducts are not isomorphic, hence
the category of groups is not an additive category.

3.11 Isomorphisms. We say that two groups are isomorphic if there exists a bijective homorphism
𝜙 ∶ 𝐻 → 𝐺. Let 𝜙−1 ∶ 𝐺 → 𝐻 be its inverse as a map of sets. Since 𝜙 is a morphism of groups we
have

𝜙 (𝜙−1(𝑎) ⋅ 𝜙−1(𝑏)) = 𝜙 (𝜙−1(𝑎)) ⋅ 𝜙 (𝜙−1(𝑏)) = 𝑎 ⋅ 𝑏 = 𝜙(𝜙−1(𝑎 ⋅ 𝑏)).
Applying 𝜙−1 to this equation we get

𝜙−1(𝑎) ⋅ 𝜙−1(𝑏) = 𝜙−1(𝑎 ⋅ 𝑏),

hence 𝜙−1 is also a homomorphism of groups and 𝜙 is an isomorphism in the sense of 1.4.
We may have non-trivial isomorphisms from 𝐺 to itself: 𝜙 ∶ 𝐺 → 𝐺. These will be called automor-

phisms of 𝐺. Of course the identity map is such an automorphism. But for the cyclic group of order 3,
𝐺 = 𝑒, 𝑥, 𝑥2 such that 𝑥3 = 𝑒, the following is an automorphism:

𝑒 ↦ 𝑒, 𝑥 ↦ 𝑥2, 𝑥2 ↦ 𝑥.

3.12 Conjugation. More generally, for any element 𝑔 ∈ 𝐺 we have an automorphism Ad𝑔 of 𝐺 given
by

ℎ ↦ Ad𝑔(ℎ) ∶= 𝑔ℎ𝑔−1.
It is indeed an automorphism as

Ad𝑔(ℎ ⋅ ℎ′) = 𝑔ℎℎ′𝑔−1 = 𝑔ℎ𝑔−1𝑔ℎ′𝑔−1 = Ad𝑔(ℎ) ⋅ Ad𝑔(ℎ′).

If 𝐺 is Abelian, then for any 𝑔 ∈ 𝐺 we have Ad𝑔 = Id𝐺. More generally, consider the set Aut(𝐺) of all
automorphisms of 𝐺, this is a group with composition as the multiplication as in Example 3.5 d). Indeed,
given two automorphisms 𝜙, 𝜓 of 𝐺, we have already noticed in 3.11 that 𝜙−1 is an automorphism. As
for the multiplication we have

𝜙 ∘ 𝜓(𝑔 ⋅ 𝑔′) = 𝜙 (𝜓 (𝑔 ⋅ 𝑔′)) = 𝜙 (𝜓(𝑔) ⋅ 𝜓(𝑔′)) = 𝜙(𝜓(𝑔)) ⋅ 𝜙 (𝜓(𝑔′))).
1 Unique in the sense that it makes the diagram of 2.3 commute.
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Lemma. The map 𝐺 → Aut(𝐺), 𝑔 ↦ Ad𝑔 is a morphism of groups.

Proof. This is simply the statement that

Ad𝑔𝑔′ ℎ = 𝑔𝑔′ℎ(𝑔𝑔′)−1 = 𝑔𝑔′ℎ(𝑔′)−1𝑔−1 = Ad𝑔 (𝑔′ℎ(𝑔′)−1) = Ad𝑔 ∘ Ad𝑔′ ℎ.

As with any homomorphism of groups, the kernel and the image of this map are subgroups. We call
the center of 𝐺, and denote it by 𝑍(𝐺) its kernel, and by inner automorphisms and denote it by Inn(𝐺)
the image.

3.13 Definition. A subgroup 𝐻 ⊂ 𝐺 is called normal if it is stable by conjugation by 𝐺, that is, for every
ℎ ∈ 𝐻 and 𝑔 ∈ 𝐺, 𝑔ℎ𝑔−1 ∈ 𝐻 .

3.14 Lemma. The kernel of a homomorphism 𝜑 ∶ 𝐻 → 𝐺 is a normal subgroup.

Proof. Let ℎ ∈ ker(𝜑) and 𝑔 ∈ 𝐻 , we have

𝜑(𝑔ℎ𝑔−1) = 𝜑(𝑔)𝜑(ℎ)𝜑(𝑔−1) = 𝜑(𝑔)𝜑(𝑔)−1 = 𝑒.

3.15. The image of a homomorphism might not be a normal subgroup (consider the inclusion of a non-
normal subgroup). We have however:

Lemma. Inn(𝐺) ⊂ Aut(𝐺) is a normal subgroup

Proof. Let 𝜙 ∈ Aut(𝐺) we have

𝜙 Ad𝑔 𝜙−1(ℎ) = 𝜙 (𝑔𝜙−1(ℎ)𝑔−1) = 𝜙(𝑔)ℎ𝜙(𝑔)−1 = Ad𝜙(𝑔)(ℎ),

for all ℎ ∈ 𝐺, therefore 𝜙 Ad𝑔 𝜙−1 = Ad𝜙(𝑔) ∈ Inn(𝐺).

3.16. Let 𝐻 ⊂ 𝐺 be a subgroup, not necessarily normal. Consider the set

Ad𝑔 𝐻 = 𝑔𝐻𝑔−1 = {𝑔ℎ𝑔−1, ‖ℎ ∈ 𝐻} ⊂ 𝐺.

We have 𝑔ℎ𝑔−1𝑔ℎ′𝑔−1 = 𝑔ℎℎ′𝑔−1 so that 𝑔𝐻𝑔−1 is closed under the product and considering 𝑔−1ℎ−1𝑔
we see it is also closed under inverses, hence it is a subgroup of 𝐺. We will say that two subgroups
𝐻, 𝐻′ of 𝐺 are conjugated if there exits 𝑔 ∈ 𝐺 such that 𝑔𝐻𝑔−1 = 𝐻′.

3.17 Group Actions. Recall that for any group 𝐺, we have another group 𝐺𝑜𝑝 which is 𝐺 as a set, but
with the multiplication defined by 𝑔 ⋅𝑜𝑝 ℎ ∶= ℎ ⋅ 𝑔.

A right action of a group 𝐺 on a set 𝑆 is a homomorphism of groups 𝜌 ∶ 𝐺𝑜𝑝 → Aut(𝑆). Equivalently,
we may use Definition 3.4 replacing the leftmost copy of 𝐺 in the diagrams by 𝑆 , namely, a right action
of a group 𝐺 on a set 𝑆 is a map 𝑆 × 𝐺 ⋅−→ 𝑆 making the following diagrams commute:

𝑆 × 𝐺
⋅
��

𝑆 × ∗Id𝑆 ×𝑒oo

𝜋1
zzuuu

uu
uu
uu
u

𝑆

(3.17.1)
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𝑆 × 𝐺 × 𝐺 ⋅×Id𝐺 //

Id𝑆 ×⋅
��

𝑆 × 𝐺
⋅
��

𝑆 × 𝐺 ⋅ // 𝑆

(3.17.2)

The equivalence between this definition and the previous one is simply given by declaring 𝜌(𝑔)(𝑠) = 𝑠⋅𝑔.
The first diagram says that the identity of 𝑒 acts as the identity automorphism (𝜌(𝑒) = Id𝑆 ), and the
second diagram is equivalent to 𝜌 being a group homomorphism: 𝜌(𝑔) ∘ 𝜌(ℎ) = 𝜌(ℎ𝑔)
3.18 Examples.

a) Let 𝜙 ∶ 𝐻 → 𝐺 be a homomorphism of groups. Then 𝐻 acts on the right of 𝐺 by right multipli-
cation, namely the action map is simply 𝑔 ⋅ ℎ ∶= 𝑔 ⋅ 𝜙(ℎ).

b) The group of permutations of 𝑛 elements acts on the right on the set 1, ⋯ , 𝑛 as follows. For a
permutation 𝜎 ∈ 𝑆𝑛, we let 𝜌(𝜎)(𝑖) = 𝜎−1(𝑖) for 1 ≤ 𝑖 ≤ 𝑛.

c) The group 𝐺 acts on itself on the right in two different ways. First as in a) taking 𝜙 = Id𝐺, that
is by right multiplication. Second by conjugation. Indeed we may define 𝜌(𝑔) = Ad𝑔−1 and by
definition is a homomorphism 𝐺𝑜𝑝 → Aut(𝐺).

3.19. Let 𝐺 be a group acting on the right on 𝑆 . We then have an equivalence relation on 𝑆 by declaring
𝑠 ∼ 𝑡 if there exists 𝑔 ∈ 𝐺 such that 𝑠 ⋅ 𝑔 = 𝑡. Indeed we have

reflexivity 𝑠 ∼ 𝑠 by taking 𝑔 = 𝑒.

symmetry Let 𝑠 ∼ 𝑡 so that we have 𝑠 ⋅ 𝑔 = 𝑡. Then 𝑡 ⋅ 𝑔−1 = 𝑠 and 𝑡 ∼ 𝑠.

transitivity Let 𝑠 ∼ 𝑡 and 𝑡 ∼ 𝑢, that is we have 𝑔 and ℎ in 𝐺 with 𝑠 ⋅ 𝑔 = 𝑡 and 𝑡 ⋅ ℎ = 𝑢. Then (𝑠 ⋅ 𝑔) ⋅ ℎ =
𝑠 ⋅ (𝑔 ⋅ ℎ) = 𝑢 and 𝑠 ∼ 𝑢.

The set of equivalence classes 𝑆/ is typically denoted by 𝑆/𝐺. We have the map of sets 𝑆 → 𝑆/𝐺,
𝑠 ↦ [𝑠], which assigns to each element 𝑠 ∈ 𝑆 its equivalence class.

3.20 Example (Cosets). One of the most important examples will be the quotient 𝐺/𝐻 where 𝐻 ⊂ 𝐺 is
a subgroup. The action here is defined as in Example 3.18 a). The equivalence classes are called the right
𝐻-cosets of 𝐺.

3.21. Let 𝐺 be a group acting on the right on the set 𝑆 . The action is said to be transitive if the set
𝑆/𝐺 ≃ ∗, that is, for every pair 𝑠, 𝑡 ∈ 𝑆 there exists 𝑔 ∈ 𝐺 such that 𝑠 ⋅ 𝑔 = 𝑡.

For each element 𝑠 ∈ 𝑆 , the subset

𝐺𝑠 ∶= {𝑔 ∈ 𝐺|𝑠 ⋅ 𝑔 = 𝑠} ,

is a subgroup of 𝐺 called the stabilizer or the isotropy of 𝑠. Indeed the identity element belongs to 𝐺𝑠
for any 𝑠. Also if 𝑔, ℎ ∈ 𝐺𝑠 then we have (𝑠 ⋅ 𝑔) ⋅ ℎ = 𝑠 ⋅ (𝑔ℎ) = 𝑠 hence 𝑔ℎ ∈ 𝐺𝑠. Finally if 𝑔 ∈ 𝐺𝑠 we
have 𝑠 ⋅ 𝑔−1 = (𝑠 ⋅ 𝑔) ⋅ 𝑔−1 = 𝑠 ⋅ 𝑒 = 𝑠 hence 𝑔−1 ∈ 𝐺𝑠.

Let ℎ ∈ 𝐺𝑠 and 𝑔 ∈ 𝐺 be arbitrary. Define 𝑡 = 𝑠 ⋅ 𝑔−1.

𝑡 ⋅ (𝑔 ⋅ ℎ ⋅ 𝑔−1) = 𝑠 ⋅ ℎ ⋅ 𝑔−1 = 𝑡.

Hence it follows that 𝑔𝐺𝑠𝑔−1 = 𝐺𝑠⋅𝑔−1 . In other words, for any two representatives of the same class
[𝑠] ∈ 𝑆/𝐺, the isotropy groups are conjugated.

When 𝐺 acts on itself by multiplication on the right, the isotropy group is trivial, that is 𝐺𝑔 = {𝑒}
for all 𝑔. On the other hand when 𝐺 acts on itself by conjugation as in 3.18 c) the isotropy group of 𝑔 is
called the centralizer of 𝑔.
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3.22. If 𝐺 is a finite group, we have an equality |𝐺/𝐻| = |𝐺|/|𝐻| since for each coset 𝑔𝐻 we have
a bijection 𝐻 ≃ 𝑔𝐻 given by ℎ ↦ 𝑔 ⋅ ℎ (the stabilizer of any 𝑔 is trivial). Since the whole set 𝐺 is
the disjoint union of its equivalence classes and each equivalence class has |𝐻| elements, we obtain the
result. In particular we see that the order of a subgroup divides the order of a group. We define the
index of 𝐻 in 𝐺, [𝐺 ∶ 𝐻] as that quotient.

For infinite groups we may still make sense of the index as the number of elements in 𝐺/𝐻 , allowing
this number to be infinite.

3.23 Commuting Actions. Sometimes the same set has two commuting actions of the group 𝐺 (or even
different groups) in a natural way. Suppose 𝐻 and 𝐺 are two groups such that 𝐻 acts on the left and
𝐺 acts on the right of 𝑆 . We say that these actions commute if for every 𝑠 ∈ 𝑆 , ℎ ∈ 𝐻 and 𝑔 ∈ 𝐺 we
have (ℎ ⋅ 𝑠) ⋅ 𝑔 = ℎ ⋅ (𝑠 ⋅ 𝑔). For example the group 𝐺 has two commuting actions of 𝐺 on itself. Or
if 𝐺 is a group and 𝐻, 𝐾 are two subgroups, the actions of 𝐻 by left multiplication and of 𝐾 by right
multiplication on 𝐺 commute.

Let 𝑆 be a set with two commuting actions of 𝐻 and 𝐺 as above. Then we have the set 𝐻\𝑆 (defined
in the same way as for right cosets) of equivalence classes for the 𝐻 action. The group 𝐺 still acts on
this set. Indeed let [𝑠] be a class, we define

[𝑠] ⋅ 𝑔 ∶= [𝑠 ⋅ 𝑔].

This action is well defined since if 𝑡 is another representative of the same class, namely [𝑡] = [𝑠] then
we have ℎ ∈ 𝐻 such that ℎ ⋅ 𝑠 = 𝑡 and 𝑡 ⋅ 𝑔 = (ℎ ⋅ 𝑠) ⋅ 𝑔 = ℎ ⋅ (𝑠 ⋅ 𝑔), hence [𝑡 ⋅ 𝑔] = [𝑠 ⋅ 𝑔]. I leave it to
you to check that this is indeed an action!

3.24 Definition. Let 𝑆 and 𝑇 be two sets with 𝐺-actions on the right. We define a homomorphism of
sets with a right 𝐺-action to be a map of sets 𝜙 ∶ 𝑆 → 𝑇 such that

𝜙(𝑠 ⋅ 𝑔) = 𝜙(𝑠) ⋅ 𝑔, ∀𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇 , 𝑔 ∈ 𝐺.

With this definition, we obtain a category G − Set of sets with right 𝐺-actions.

3.25 Orbits. Let 𝐺 be a group acting on 𝑆 . Let 𝑠 ∈ 𝑆 and consider the set

𝑠 ⋅ 𝐺 = {𝑠 ⋅ 𝑔|𝑔 ∈ 𝐺} ⊂ 𝑆.

It is called the right 𝐺-orbit of 𝑠. It is clear that 𝐺 acts transitively on 𝑠 ⋅ 𝐺. Moreover, we have a map
of sets

𝐺 → 𝑠 ⋅ 𝐺, 𝑔 ↦ 𝑠 ⋅ 𝑔.
The isotropy subgroup 𝐺𝑠 ⊂ 𝐺 is sent to 𝑠 by this map. Moreover, suppose there are two 𝑔, ℎ ∈ 𝐺 such
that 𝑠 ⋅ 𝑔 = 𝑠 ⋅ ℎ, then ℎ𝑔−1 ∈ 𝐺𝑠 and therefore there exists 𝑓 ∈ 𝐺𝑠 such that 𝑓 ⋅ 𝑔 = ℎ. Indeed consider
𝐺 with the two commuting actions of the subgroup 𝐺𝑠 on the left and 𝐺 on the right. As in 3.23, the set
𝐺𝑠\𝐺 has a right action of 𝐺. The map above descends to an isomorphism in G − Set

𝜑 ∶ 𝐺𝑠\𝐺 ∼−→ 𝑠 ⋅ 𝐺. (3.25.1)

We have already checked that 𝜑 is injective. Surjectivity is clear, as is the compatibility with the right
𝐺-actions.

3.26 Corollary. Suppose 𝑆 and 𝐺 are finite sets, then for any 𝑠 ∈ 𝑆 we have an equality

|𝐺| = |𝐺𝑠| ⋅ |𝑠 ⋅ 𝐺|.
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Proof. By the isomorphism (3.25.1) this is equivalent to checking |𝐺𝑠\𝐺| = |𝐺|/|𝐺𝑠| which in turn is the
statement in 3.22.

3.27 Corollary. Let 𝐺 be a finite group 𝑔 ∈ 𝐺 be any element. Let 𝐶(𝑔) be the set of elements in 𝐺
conjugated to 𝑔, 𝐶𝑔 be the centralizer of 𝑔 in 𝐺, then

|𝐺| = |𝐶(𝑔)||𝐶𝑔|,

in particular both numbers on the right divide the order of the group 𝐺.

Proof. Applying the previous Corollary to the case when 𝑆 = 𝐺 with the action by conjugation, 𝑠 =
𝑔 ∈ 𝐺 and 𝐺𝑠 is the centralizer of 𝑔 while 𝑠 ⋅ 𝐺 is the conjugation class of 𝑔.

3.28 Exercises

3.28.1.Let 𝐺, 𝐻 be two groups. And consider the set consisting on all finite sequences {𝑎1, 𝑎2, 𝑎3, ⋯}
where 𝑎𝑖 either belongs to 𝐺 or 𝐻 . We reduce the sequence by applying the following operations.

a) We remove any appearance of the identity element from either group.

b) Replace any pair of consecutive 𝑎𝑖𝑎𝑖+1 by their product if both are elements from the same group.

Then every reduced word is an alternating sequence (possibly empty) {𝑔1, ℎ1, 𝑔2, ℎ2, ⋯} of elements in
𝐺 and 𝐻 . The free group 𝐺 ∗ 𝐻 is the group whose elements are the reduced words with the operation
of concatenation (and then reduction).

Prove that 𝐺 ∗ 𝐻 is a coproduct in the category of groups.

3.28.2.Check that the two given definitions of a right action of 𝐺 on 𝑆 given in 3.17 are equivalent. Give
the corresponding definitions for a left action of 𝐺 on 𝑆 .

3.28.3.Let 𝐺𝐿𝑛(𝑘) be the group of invertible 𝑛 × 𝑛 matrices with entries in 𝑘. Let 𝐺𝑟(𝑟, 𝑛) be the set of
𝑟-dimensional sub-vector spaces of 𝑘⊕𝑛. Show that 𝐺𝐿𝑛(𝑘) naturally acts transitively on 𝐺𝑟(𝑟, 𝑛). What
is the stabilizer of a given sub-vector space?

3.28.4.Show that the relation 𝐻 ∼ 𝐻′ if 𝐻 and 𝐻′ are conjugated subgroups of 𝐺 is an equivalence
relation on the set of all subgroups.

3.28.5.Prove that two commuting actions of 𝐻 and 𝐺 on 𝑆 as in 3.23 is equivalent to a homomorphism
of groups 𝐻 × 𝐺𝑜𝑝 → Aut(𝑆).

3.28.6.Let 𝑆 be a set with two commuting actions of 𝐻 and 𝐺. Show that 𝐻\𝑆 has a right action of 𝐺
and 𝑆/𝐺 has a left action of 𝐻 .
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