
2 Limits
In this lecture we continue with our study of the basic objects in category theory. In this lecture we
will deal with the existence of objects satisfying some universal properties. But let us first define some
properties of morphisms and some canonical functors that were left out in the previous lecture.

2.1 Definition. Let 𝜙 ∈ Hom𝒞 (𝑎, 𝑏) be a morphism in a category. For any object 𝑐 it produces two
maps of sets:

𝜙 ∘ ⋅ ∶ Hom𝒞 (𝑐, 𝑎) → Hom𝒞 (𝑐, 𝑏), ⋅ ∘ 𝜙 ∶ Hom𝒞 (𝑏, 𝑐) → Hom𝒞 (𝑎, 𝑐).

We will say that 𝜙 is a monomorphism if the first map is an injection of sets and 𝜙 is an epimorphism if
the second map is a surjection of sets.

2.2 Remark. In the category of sets these notions agreewith the usual notions formaps of sets. However,
in the category of topological spaces for example, an epimorphism may not be surjective.

A morphism may be both a monomorphism and an epimorphism but not an isomorphism. Take for
example the inclusion ℚ ↪ ℝ in the category of Hausdorff topological spaces.

A more radical example is to consider the category depicted by the graph

• → •

Theonly non-identity arrow is both an epimorphism and amonomorphism and it is not an isomorphism.

2.3 Definition. Let 𝐹 ∶ 𝐼 → 𝒞 be a functor between categories (the notation is suggestive as we will
often take the source of 𝐹 to be given by a partially ordered set). A limit of 𝐹 is an object 𝑎 of 𝒞 together
with morphisms 𝜙𝑖 ∶ 𝑎 → 𝐹 (𝑖) for each object 𝑖 of 𝐼 satisfying the following properties

a) For any morphism 𝜓𝑖𝑗 ∶ 𝑖 → 𝑗 in 𝐼 , the following diagram commutes

𝑎
𝜙𝑖

}}{{
{{
{{
{{ 𝜙𝑗

!!C
CC

CC
CC

C

𝐹 (𝑖) 𝐹 (𝜓𝑖𝑗 )
// 𝐹 (𝑗)

(2.3.1)

b) For any other object 𝑎′ together with morphisms 𝜙′
𝑖 ∶ 𝑎 → 𝐹 (𝑖) making the analogous diagram to

(2.3.1) commute there exists a unique morphism 𝑎′ → 𝑎 making the following diagram commute

𝑎′

𝜙′
𝑖

��2
22

22
22

22
22

22
2

𝜙′
𝑗

��

∃!

(( 𝑎
𝜙𝑖

}}{{
{{
{{
{{ 𝜙𝑗

!!C
CC

CC
CC

C

𝐹 (𝑖) 𝐹 (𝜓𝑖𝑗 )
// 𝐹 (𝑗)

The limit if it exists is denoted by lim 𝐹 , lim←−− 𝐹 or even lim←−−𝑖 𝐹 (𝑖). Notice that it may not be unique, if 𝑎
and 𝑎′ are limits for 𝐹 then there exists a unique isomorphism 𝑎 ≃ 𝑎′.
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2.4. Turning around arrows one arrives at the notion of a colimit, in other words, let 𝐹 ∶ 𝐼 → 𝒞 be a
functor. A colimit for 𝐹 if it exists is an object 𝑎 of 𝒞 together with morphisms 𝜙𝑖 ∶ 𝐹 (𝑖) → 𝑎 for each
object 𝑖 of 𝐼 satisfying the following properties:

a) For any morphism 𝜓𝑖𝑗 ∶ 𝑖 → 𝑗 in 𝐼 the following diagram commutes:

𝑎==
𝜙𝑖

{{
{{
{{
{{

aa
𝜙𝑗

CC
CC

CC
CC

𝐹 (𝑖) 𝐹 (𝜓𝑖𝑗 )
// 𝐹 (𝑗)

(2.4.1)

b) For any other object 𝑎′ together with morphisms 𝜙′
𝑖 ∶ 𝑎 → 𝐹 (𝑖) making the analogous diagram to

(2.3.1) commute there exists a unique morphism 𝑎′ → 𝑎 making the following diagram commute

𝑎′
XX

𝜙′
𝑖

22
22

22
22

22
22

22
ss 𝜙′

𝑗hh
∃!

𝑎==
𝜙𝑖

{{
{{
{{
{{

aa
𝜙𝑗

CC
CC

CC
CC

𝐹 (𝑖) 𝐹 (𝜓𝑖𝑗 )
// 𝐹 (𝑗)

The colimit if it exists is denoted by colim 𝐹 , lim−−→ 𝐹 or even lim−−→𝑖 𝐹 (𝑖). Notice that it may not be unique,
if 𝑎 and 𝑎′ are limits for 𝐹 then there exists a unique isomorphism 𝑎 ≃ 𝑎′.

2.5 Examples.

a) If the category 𝐼 is the empty category with no objects and no morphisms. Then a colimit (for the
empty functor) is called a final object of 𝒞 . It is an object ∗ of 𝒞 such that for every other object
𝑎 of 𝒞 there exists a unique morphism 𝑎 → ∗ in 𝒞 . The category of sets or topological spaces
for example has the set ∗ with only one element as a final object. The category of fields however
does not have a final object.

b) Similarly, a colimit for the empty category 𝐼 is called an initial object in 𝒞 . It is an object ∗ of
𝒞 such that for any other object 𝑎 of 𝒞 there is a unique morphism ∗ → 𝑎. The category of sets
has the empty set as an initial object. A partially ordered set, when viewed as a category, has an
initial object only if it has a least element.

c) If 𝐼 = [0] is the category with only one object and one morphism, then a functor 𝐼 → 𝒞 is
simply the datum of an object 𝑎 of 𝒞 . A limit for this functor is the same thing as a final object
in the category 𝒞/𝑎. Similarly a colimit of this functor is the same thing as an initial object in the
category 𝒞𝑎/.

d) If 𝐼 = [0] ⨿ [0] is the disjoint union of two categories with one object and one morphism, then
a functor 𝐼 → 𝒞 is the same thing as two objects, 𝑎, 𝑏 of 𝒞 . A limit for this functor is called a
product and is denoted by 𝑎 × 𝑏 a colimit is called a coproduct and its denoted by 𝑎 ⨿ 𝑏. In the
category of topological spaces for example, the product of spaces with the product topology is a
product in the categorical sense, while the disjoint union of topological spaces is a coproduct. In
the category Vect𝑘 of vector spaces, the direct sum is both a product and a coproduct.
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e) More generally, consider 𝐼 the category given by the graph

• → • ← •.

A functor from 𝐼 to 𝒞 is specified by three objects 𝑎, 𝑏, 𝑐 together with morphisms 𝑎 → 𝑏 and 𝑐 →
𝑏. A limit for this functor is called a fibered product and it is denoted by 𝑎 ×𝑏 𝑐. The corresponding
diagram

𝑎 ×𝑏 𝑐

��

// 𝑐

��
𝑎 // 𝑏

is called a Cartesian diagram. The universal property satisfied by this product is that any object
𝑑 of 𝒞 together with two morphisms 𝑑 → 𝑎 and 𝑑 → 𝑐 making the solid part of the following
diagram commute, then the dotted arrow making the full diagram commute exists and is unique:

𝑑
∃!

""

��

$$𝑎 ×𝑏 𝑐

��

// 𝑐

��
𝑎 // 𝑏

In the category of topological spaces, the fibered product of two morphisms 𝑔 ∶ 𝑎 → 𝑏, 𝑓 ∶ 𝑐 → 𝑏
is given by the subspace of the product 𝑎 × 𝑏 consisting on pairs of points 𝑥 ∈ 𝑎, 𝑦 ∈ 𝑐 such that
𝑔(𝑥) = 𝑓(𝑦) equipped with the subspace topology. When 𝑎 = ∗ is the topological space consisting
of one point, the map 𝑔 ∶→ 𝑏 is determined by it’s image 𝑧 ∈ 𝑏. The fiber product in this case is
naturally homeomorphic to 𝑓 −1(𝑧) hence the name fibered product.
If the category 𝒞 has a final object ∗, then the fiber product when 𝑏 = ∗ is the same as a product.

f) Dually, if 𝐼 is given as the category given by the graph

• ← • → •,

then a functor 𝐼 → 𝒞 is specified by two morphisms 𝑏 → 𝑎, 𝑏 → 𝑐. A colimit for this functor
is called a fibered coproduct and is denoted by 𝑎 ⨿𝑏 𝑐. It suffices to say that the universal property
satisfied by it are summarized in the following commuting diagram

𝑑 bb
∃!

TT ll

𝑎 ⨿𝑏 𝑐
OO

oo 𝑐OO

𝑎 oo 𝑏

Thenotation is suggestive: for the category of sets, with twomaps of sets 𝑓 ∶ 𝑇 → 𝑆 , 𝑔 ∶ 𝑇 → 𝑈 ,
a fibered coproduct is a quotient set of the disjoint union 𝑆 ⨿𝑈 , by the equivalence relation where
we declare 𝑆 ∋ 𝑓(𝑡) ∼ 𝑔(𝑡) ∈ 𝑈 .
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g) Consider the case when 𝐼 is given by the following graph

• ((
66 • .

A functor 𝐼 → 𝒞 consists of two objects 𝑎, 𝑏 of 𝒞 and twomorphisms 𝜙, 𝜓 ∈ Hom𝒞 (𝑎, 𝑏). A limit
for this functor is called an equalizer of 𝜙 and 𝜓 . Indeed if 𝑘 is a limit, then 𝑘 comes equipped
with a morphism 𝜎 ∶ 𝑘 → 𝑎 such that 𝜙 ∘ 𝜎 = 𝜓 ∘ 𝜎. Any other object 𝑘′ with a morphism
𝜎′ ∶ 𝑘′ → 𝑎 such that both compositions to 𝑏 are equal, factors through 𝑘.
Dually, a limit for this diagram is called a coequalizer of 𝜙 and 𝜓 . This is an object 𝑐 together with
a morphism 𝜏 ∶ 𝑏 → 𝑐 such that both compositions 𝜏 ∘ 𝜙 = 𝜏 ∘ 𝜓 .

2.6. Let 𝒞 and 𝒟 be categories, then we may produce another category 𝒞 × 𝒟 whose objects are pairs
(𝑎, 𝑏) of objects an object 𝑎 of 𝒞 and an object 𝑏 of 𝒟 and morphisms (𝑎, 𝑏) → (𝑎′, 𝑏′) are pairs of
morphisms in Hom𝒞 (𝑎, 𝑎′) × Hom𝒟 (𝑏, 𝑏′) with the obvious composition. We have an obvious functor

Δ ∶ 𝒞 → 𝒞 × 𝒞 , 𝑎 ↦ (𝑎, 𝑎), 𝜙 ↦ (𝜙, 𝜙).

This is called the diagonal functor.
We also have the coproduct category 𝒞 ⨿ 𝒟 whose objects are the disjoint union of the objects of 𝒞

and of 𝒟 and morphism are given by

Hom𝒞 ⨿𝒟 (𝑎, 𝑏) =
⎧⎪
⎨
⎪⎩

Hom𝒞 (𝑎, 𝑏) if both 𝑎 and 𝑏 are objects of 𝒞
Hom𝒟 (𝑎, 𝑏) if both 𝑎 and 𝑏 are objects of 𝒟
∅ otherwise

�

We have an obvious functor ∇ ∶ 𝒞 ⨿ 𝒞 → 𝒞 which is the identity on objects and morphisms.

2.7. Notice that if the category 𝒞 has products, then we have a unique isomorphism 𝑎 × (𝑏 × 𝑐) ≃
(𝑎 × 𝑏) × 𝑐. Indeed, by the universal property of the products we have maps 𝑎 × (𝑏 × 𝑐) → 𝑏 × 𝑐 → 𝑐 and
𝑎 × (𝑏 × 𝑐) → 𝑏 × 𝑐 → 𝑏 and 𝑎 × (𝑏 × 𝑐) → 𝑎. Using the last two maps we obtain a map 𝑎 × (𝑏 × 𝑐) → 𝑎 × 𝑏,
which in combination with the first map gives the required morphism 𝑎 × (𝑏 × 𝑐) → (𝑎 × 𝑏) × 𝑐. The
same argument is used to produce the inverse.

It makes sense therefore to write the products 𝑎 × 𝑏 × 𝑐 instead of using parenthesis. This does not
mean that any parenthesis location would produce the same objct, but it will be unique modulo a unique
isomorphism.

In fact, this latter product is the same as the limit of the functor from the category 𝐼 given by the
graph

• • •
which corresponds to the three objects 𝑎,𝑏 and 𝑐.

2.8. Let 𝒞 be a category with an initial and final object ∗. Then we have a marked morphism1 ∗ ∈
Hom𝒞 (𝑎, 𝑏) in for every pair of objects, given as the composition of the unique morphisms 𝑎 → ∗ → 𝑏.
Notice also that in this case we have Hom𝒞 (∗, ∗) = ∗, the set with only one element.

Let 𝒞 be a category such that it has products, coproducts and they are isomorphic. For example the
category of vector spaces or Abelian groups. Then for every pair of objects 𝑎, 𝑏 the set Hom𝒞 (𝑎, 𝑏) has
an associative operation. Indeed for 𝜙, 𝜓 ∈ Hom𝒞 (𝑎, 𝑏) we define 𝜙 + 𝜓 as given by the compositio

𝑎 Δ−→ 𝑎 × 𝑎 𝜙×𝜓−−−→ 𝑎 × 𝑎 ≃ 𝑎 ⨿ 𝑎 ∇−→ 𝑎. (2.8.1)
1here we are abusing notation and using the same letter for the object and the morphism
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Notice also that in this case we have canonical isomorphisms 𝑎 × ∗ ≃ 𝑎 ⨿ ∗ ≃ 𝑎. Indeed we have the
projection 𝜋 ∶ 𝑎 × ∗ → 𝑎. On the other hand the maps Id𝑎 and the unique morphism 𝑎 → ∗ produce
a morphism 𝑎 → 𝑎 × ∗ which is easily seen to be an inverse to 𝜋. The situation for the coproduct is
similar.

2.9 Proposition. Let 𝒞 be a category with an initial and final object 0 and with products and coprod-
ucts that are moreover isomorphic. Then for any two objects 𝑎, 𝑏 the set of morphisms is a commutative
associative monoid with the sum defined by (2.8.1) and the identity being the 0 morphism 𝑎 → 0 → 𝑏.

Proof. Let us check first commutativity. Let us call 𝜋1 an 𝜋2 the two canonical projections 𝑎 × 𝑎 → 𝑎.
Then using the maps 𝑎 × 𝑎 → 𝑎 in different order, that is 𝜋2, 𝜋1, we obtain a morphism 𝜎 ∶ 𝑎 × 𝑎 → 𝑎 × 𝑎
which is the exchange of the two factors. It is clear that 𝜎2 = Id𝑎×𝑎 hence 𝜎 is invertible. The same
argument shows that we have an isomorphism (also denoted by 𝜎) of 𝑎 ⨿ 𝑎 that corresponds to the
exchange of the factors.

Now consider the commuting diagram:

𝑎 × 𝑎 𝜓×𝜙 //

𝜎

��

𝑎 ⨿ 𝑎

𝜎

��

""E
EE

EE
EE

E

𝑎

<<zzzzzzzz

""D
DD

DD
DD

D 𝑎

𝑎 × 𝑎 𝜙×𝜓
// 𝑎 ⨿ 𝑎

<<yyyyyyyy

The composition on the top is 𝜓 + 𝜙 and in the bottom is 𝜙 + 𝜓 .
We now proceed to check associativity. The two maps Id𝑎 and Δ produce by the universal property a

morphism 𝑎 → 𝑎×(𝑎×𝑎). On the other hand the twomapsΔ, Id𝑎 produce amap 𝑎 → (𝑎×𝑎)×𝑎. Since the
product is associative these two maps are identified and we have a unique morphism Δ ∶ 𝑎 → 𝑎 × 𝑎 × 𝑎.
This morphism is therefore obtained as either composition

𝑎 × 𝑎
(Id𝑎 ×Δ)

%%LL
LLL

LLL
LL

𝑎

Δ
<<yyyyyyyy

Δ ""E
EE

EE
EE

E 𝑎 × 𝑎 × 𝑎

𝑎 × 𝑎
(Δ×Id𝑎)

99rrrrrrrrrr

Dually, the two compositions in the following diagram commute:

𝑎 ⨿ 𝑎
∇

!!D
DD

DD
DD

DD

𝑎 ⨿ 𝑎 ⨿ 𝑎

∇⨿Id𝑎
99ssssssssss

Id𝑎 ⨿∇ %%KK
KKK

KKK
KK

𝑎

𝑎 ⨿ 𝑎
∇

==zzzzzzzz
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We now consider the diagram

𝑎 × 𝑎 × 𝑎 𝜓×𝜙×𝜁// 𝑎 × (𝑎 ⨿ 𝑎)

∼

��

Id𝑎 ×∇ // 𝑎 ⨿ 𝑎

!!D
DD

DD
DD

DD

𝑎

::vvvvvvvvvv

$$H
HH

HH
HH

HH
H 𝑎

𝑎 × 𝑎 × 𝑎 𝜓×𝜙×𝜁
// (𝑎 ⨿ 𝑎) × 𝑎∇×𝑖𝑑𝑎

// 𝑎 ⨿ 𝑎

==zzzzzzzz

The composition on the top is 𝜓 + (𝜙 + 𝜁) and at the bottom is (𝜓 + 𝜙) + 𝜁 . Commutativity of the
diagram implies associativity.

Finally if we let 𝜓 = 0 in (2.8.1) we have the following commuting diagram

𝑎 × 𝑎 𝜙×0 // 𝑎 ⨿ 𝑎
∇

!!D
DD

DD
DD

DD

𝑎

Δ
=={{{{{{{{{

Id𝑎
// 𝑎 × 0 𝜙

// 𝑎 ⨿ 0 Id𝑎
// 𝑎

proving that the operation is unital.

2.10 Definition. A category 𝒞 with the conditions of the previous proposition and such that for every
pair of objects 𝑎, 𝑏 the monoid Hom𝒞 (𝑎, 𝑏) has inverses is called a additive category. It is customary to
write ⊕ instead of × or ⨿ in this case.

2.11 Definition. Let 𝒞 be a category with an initial and final object ∗ (for example if 𝒞 is an additive
category). Then a limit (resp. colimit) in Example 2.5 g) applied to the case when 𝜓 = ∗ ∈ Hom𝒞 (𝑎, 𝑏)
is called a kernel (resp. cokernel) of 𝜙.

2.12 Exercises

2.12.1.Prove the assertion in 2.5 c).

2.12.2.Check that the direct sum is both a product and a coproduct in the category of vector spaces.

2.12.3.Find a product in the category Set∗.

2.12.4.Prove that the product category defined in 2.6 is a product in the category of categories (at least
in the case when they are both small).

2.12.5.Let 𝒞 be a category with an initial and final object ∗. Show that Hom𝒞 (∗, ∗) is the set with only
one element.

2.12.6.Find a category which is not an additive category but that satifies the conditions of Proposition
2.9.

2.12.7.Let 𝒞 be a category with an initial and final object ∗. Show that every kernel is a monomorphism
and that every cokernel is an epimorphism2.

2The converse is not true, namely there are categories admitting a (mono/epi)-morphism which is not a kernel/cokernel of a
morphism.
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