
1 Categories
1.1. Throughout these lectures we will use the language of category theory. The treatment will be very
informal and We will not dwell in the subtleties nor technicalities of set theory and I recommend the
reader to look into the bibliography, specially [1].

1.2. A Category 𝒞 consists of the following data

a) A collection 𝑂𝑏(𝒞 ) of objects.

b) For each pair of objects 𝑎, 𝑏 a set of morphisms Hom𝒞 (𝑎, 𝑏).

c) For each object 𝑎 an element Id𝑎 ∈ Hom𝒞 (𝑎, 𝑎)

d) For each three objects 𝑎, 𝑏, 𝑐 a map of sets (called the composition)

∘ ∶ Hom𝒞 (𝑏, 𝑐) × Hom𝒞 (𝑎, 𝑏) → Hom𝒞 (𝑎, 𝑐), (𝜙, 𝜓) ↦ 𝜙 ∘ 𝜓.

subject to the following axioms:

a) Id𝑎 ∘𝜙 = 𝜙 and 𝜙 ∘ Id𝑏 = 𝜙 for all objects 𝑎, 𝑏 and every 𝜙 ∈ Hom𝒞 (𝑏, 𝑎).

b) Composition is associative, that is for every four objects 𝑎, 𝑏, 𝑐, 𝑑 andmorphisms𝜙 ∈ Hom𝒞 (𝑎, 𝑏),
𝜓 ∈ Hom𝒞 (𝑏, 𝑐) and 𝜃 ∈ Hom𝒞 (𝑐, 𝑑) we have

𝜃 ∘ (𝜓 ∘ 𝜙) = (𝜃 ∘ 𝜓) ∘ 𝜙 ∈ Hom𝒞 (𝑎, 𝑑).

1.3. For a given category𝒞 and two objects 𝑎, 𝑏. We often timeswill denote amorphism𝜙 ∈ Hom𝒞 (𝑎, 𝑏)
by 𝜙 ∶ 𝑎 → 𝑏 even though there is no map of sets involved.

The collection of all morphisms will be denoted by Mor(𝒞 ). We have two maps 𝑠, 𝑡 ∶ Mor(𝒞 ) →
Ob(𝒞 ) source and target, that is for 𝜙 as above we have 𝑠(𝜙) = 𝑎 and 𝑡(𝜙) = 𝑏.

1.4. Amorphism 𝜙 ∈ Hom𝒞 (𝑎, 𝑏) is said to be an isomorphism if there exists 𝜓 ∈ Hom𝒞 (𝑏, 𝑎) such that
𝜙 ∘ 𝜓 = Id𝑏 and 𝜓 ∘ 𝜙 = Id𝑎. In this case we say that 𝑎 and 𝑏 are isomorphic.

1.5 Definition. A group is a category with only one object ∗ and such that every morphism is an iso-
morphism.

1.6 Examples.

a) Set is the category whose objects are sets and morphisms are maps of sets.

b) Top is the category whose objects are topological spaces and morphisms are continuous maps of
topological spaces

c) [n] is the category with objects the set {0, ⋯ , 𝑛} and morphisms given by

Hom[n](𝑖, 𝑗) =
{

∅ 𝑖 > 𝑗
∗ 𝑖 ≤ 𝑗

�

where ∗ is the set with only one element.

d) Set∗ is the category of pointed sets, that is pairs (𝑆, 𝑠) of a set𝑆 and an element 𝑠 ∈ 𝑆 . Morphisms
(𝑆, 𝑠) → (𝑇 , 𝑡) are given by Maps of sets 𝑆 → 𝑇 such that 𝑠 ↦ 𝑡.
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e) Let 𝑘 be a field. The categoryVect𝑘 as 𝑘-vector spaces as objects and 𝑘-linearmaps asmorphisms.

f) The category Δ has as objects the non-negative integer numbers 0, 1, 2, ⋯ and for each pair of
objects 𝑛, 𝑚 a morphism 𝜙 ∶ 𝑛 → 𝑚 is a non-decreasing map of sets {0, ⋯ , 𝑛} → {0, ⋯ , 𝑚}.

g) The category Set𝑓 has as object finite sets and as morphisms maps of sets.

h) The category 𝒮 has as objects finite non-empty, linearly ordered sets and as morphisms order-
preserving maps.

i) Any partially ordered set {𝑖, 𝑗, ⋯} can be viewed as a category, with only one morphism for each
𝑖 ≤ 𝑗.

j) An oriented graph gives rise to a category with one object for each vertex and one morphism for
each arrow (one needs to add compositions and identity morphisms).

k) Grp is the category whose objects are groups (definition below) and morphisms are homomor-
phisms of groups.

1.7 Remark. Notice that for each pair of objects, there is a set of morphisms. The collection of all objects
(and consequently the collection of all morphisms) might be large enough not to be a set, for example
the categoryGrp or even Set. The categories as defined in these lectures are called locally small in the
literature. We will not deal with general categories where the morphism spaces need not be small sets.

1.8 Definition. Let 𝒞 and 𝒟 be categories. A functor 𝐹 ∶ 𝒞 → 𝒟 are assignments Ob(𝒞 ) → Ob(𝒟)
and Mor(𝒞 ) → Mor(𝒟), 𝑎 ↦ 𝐹 (𝑎), Hom𝒞 (𝑎, 𝑏) ∋ 𝜙 ↦ 𝐹 (𝜙) ∈ Hom𝒟 (𝐹 (𝑎), 𝐹 (𝑏)) such that

a) 𝐹 (Id𝑎) = Id𝐹 (𝑎) for all objects 𝑎 of 𝒞 .

b) For every three objects 𝑎, 𝑏, 𝑐 of 𝒞 and morphisms 𝜙 ∈ Hom𝒞 (𝑎, 𝑏) and 𝜓 ∈ Hom𝒞 (𝑏, 𝑐) we have
𝐹 (𝜓 ∘𝒞 𝜙) = 𝐹 (𝜓) ∘𝒟 𝐹 (𝜙) ∈ Hom𝒟 (𝐹 (𝑎), 𝐹 (𝑐)).

1.9 Examples.

a) For any category 𝒞 we have a functor Id𝒞 ∶ 𝒞 → 𝒞 which is the identity on objects and
morphisms.

b) For any category 𝒞 there is a unique functor 𝒞 → [0] which sends any object 𝑎 of 𝒞 to the unique
object of [0] and any morphism in 𝒞 to the unique morphism in [0].

c) A functor from [0] to a category 𝒞 is equivalent to the datum of an object 𝑎 of the category 𝒞 .

d) Let 𝐺 and 𝐻 be two groups. A functor 𝐻 → 𝐺 will be called a homomorphism of groups. We let
Grp be the category whose objects are groups and morphisms are homomorphisms of groups.

e) The functor 𝐹 ∶ Vect𝑘 → Set that assigns to each vector space 𝑘 its underlying set and each
linear map its underlying map of sets. Notice that this functor in fact can be thought of as a
functorVect𝑘 → Set∗ since each vector space has a marked point (the zero vector).

f) The functor Δ → 𝒮 assigns to 𝑛 the linearly ordered set {0, ⋯ , 𝑛} and to each map 𝑛 → 𝑚 the
corresponding map of sets.
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g) A functor from the category given by the graph

• ��

to Vect𝑘 consists of a vector space 𝑉 and a linear endomorphism of 𝑉 .

h) A functor from the category given by the linearly ordered set ℤ (see example 1.6 i) above) toTop
consists of a sequence {𝑋𝑖}𝑖∈ℤ of topological spaces and a continuous map 𝑋𝑖 → 𝑋𝑖+1 for each
𝑖 ∈ ℤ.

i) More generally a functor from the category given by a partially ordered set 𝐼 to a category 𝒞
consists of a family {𝑎𝑖}𝑖∈𝐼 of objects in 𝒞 parametrized by 𝐼 and for each ordered pair 𝑖 ≤ 𝑗 a
morphism 𝜙𝑖𝑗 ∶ 𝑎𝑖 → 𝑎𝑗 such that 𝜙𝑗𝑘 ∘ 𝜙𝑖𝑗 = 𝜙𝑖𝑘 for each 𝑖 ≤ 𝑗 ≤ 𝑘. A particular case for the set
𝐼 with only one element is the example c) above.

1.10. Given two functors 𝐹 ∶ 𝒞 → 𝒟 and 𝐺 ∶ 𝒟 → ℰ we obtain a functor 𝐺 ∘ 𝐹 ∶ 𝒞 → ℰ by letting
𝐺 ∘ 𝐹 (𝑎) = 𝐺(𝐹 (𝑎)) and 𝐺 ∘ 𝐹 (𝜙) = 𝐺(𝐹 (𝜙)). This composition is associative in the obvious way.
1.11 Definition. Given two categories 𝒞 and 𝒟 and two functors 𝐹 , 𝐺 ∶ 𝒞 → 𝒟 , a natural transfor-
mation 𝛼 ∶ 𝐹 ⇒ 𝐺 consists of a collection of morphisms 𝛼𝑎 ∶ 𝐹 (𝑎) → 𝐺(𝑎) for each object 𝑎 of 𝒞 such
that for each morphism 𝜙 ∈ Hom𝒞 (𝑎, 𝑏) the following diagram commutes:

𝐹 (𝑎)
𝐹 (𝜙)

��

𝛼𝑎 // 𝐺(𝑎)
𝐺(𝜙)
��

𝐹 (𝑏) 𝛼𝑏
// 𝐺(𝑏)

For any functor 𝐹 we have a natural transformation Id𝐹 ∶ 𝐹 ⇒ 𝐹 given simply by 𝛼𝑎 = Id𝐹 (𝑎).
1.12. Natural transformations can be composed in different ways. Let 𝐹 , 𝐺, 𝐻 ∶ 𝒞 → 𝒟 be three
functors and let 𝛼 ∶ 𝐹 ⇒ 𝐺 and 𝛽 ∶ 𝐺 ⇒ 𝐻 be two natural transformations. We have a vertical
composition 𝛽 ∘ 𝛼 ∶ 𝐹 ⇒ 𝐻 given by (𝛽 ∘ 𝛼)𝑎 ∶= 𝛽𝐺(𝑎) ∘ 𝛼𝑎.

We also have the following horizontal composition. Suppose we have 𝐹 , 𝐹 ′ ∶ 𝒞 → 𝒟 and 𝐺, 𝐺′ ∶
𝒟 → ℰ functors. Suppose we also have natural transformations 𝛼 ∶ 𝐹 ⇒ 𝐹 ′ and 𝛽 ∶ 𝐺 ⇒ 𝐺′. Then
we have the natural transformation 𝛽 ∘ 𝛼 ∶ 𝐺 ∘ 𝐹 ⇒ 𝐺′ ∘ 𝐹 ′ given by (𝛽 ∘ 𝛼)𝑎 = 𝐺′(𝛼𝑎) ∘ 𝛽𝐹 (𝑎).
1.13 Definition. Given two functors 𝐹 , 𝐺 ∶ 𝒞 → 𝒟 we say that a natural transformation 𝛼 ∶ 𝐹 ⇒ 𝐺
is an isomorphism if there exists a 𝛽 ∶ 𝐺 ⇒ 𝐹 such that 𝛽 ∘ 𝛼 = Id𝐹 and 𝛼 ∘ 𝛽 = Id𝐺. We say that two
functors are isomorphic if there exists an isomorphism between them. We denote 𝐹 ≃ 𝐺 in this case.
1.14 Definition. Two categories 𝒞 and 𝒟 are said to be equivalent if there exists two functors 𝐹 ∶ 𝒞 →
𝒟 and 𝐺 ∶ 𝒟 → 𝒞 and isomorphisms of functors 𝐺 ∘ 𝐹 ≃ Id𝒞 and 𝐹 ∘ 𝐺 ≃ Id𝒟 . In this case the
functor 𝐺 is said to be a inverse to 𝐹 and vice-versa. Two categories are said to be isomorphic if these
isomorphisms are the identity natural transformation, namely 𝐺 ∘ 𝐹 = Id𝒞 and 𝐹 ∘ 𝐺 = Id𝒟 .
1.15 Remark. Here is the big departure from categories to sets. One is tempted to think of categories as
sets (of their objects for example) and functors as maps between these sets. When comparing two maps
between sets, one says that 𝑓 ∶ 𝑆 → 𝑇 is invertible if there exists 𝑔 ∶ 𝑇 → 𝑆 such that 𝑓 ∘ 𝑔 = Id𝑇 and
𝑔 ∘ 𝑓 = Id𝑆 , that is, on each side of the equal side we have endomorphisms of a given set and we have
to elements of this set, which we may ask if they are equal or not. On the other hand, the compositions
like 𝐹 ∘𝐺 or the identity functor Id𝒟 are endofunctors of a given category, not really elements of a given
set, but rather objects of another category!. As such we may ask if these objects are isomorphic or not.

Notice that inverses are not uniquely defined. But given two inverses, say 𝐺 and 𝐺′ for 𝐹 there
exists a canonical isomorphism 𝐺 ≃ 𝐺′ (Exercise 1.21.3)
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1.16 Example. The category Δ of 1.6 f) is equivalent to the category 𝒮 of 1.6 h). In fact an inverse 𝐺 for the
functor in 1.9 f) is given as follows. To the finite non-empty linearly ordered set 𝐼 (that is an object of 𝒮) we
assign 𝐺(𝐼) = [|𝐼| − 1]. Notice that there exists a unique order preserving bijection of sets 𝐼 ≃ [|𝐼| − 1].
Identifying the set 𝐼 with the set [|𝐼| − 1] with these isomorphisms we see that for each order preserving
map 𝐼 → 𝐽 we have a unique order preserving map [|𝐼| − 1] → [|𝐽 | − 1], that is a morphism in Δ. If we
call 𝐹 the functor Δ → 𝒮 it is clear that 𝐺 ∘ 𝐹 = IdΔ. However the composition in the other direction is not
the identity: 𝐹 ∘ 𝐺(𝐼) is not equal to the set 𝐼 , but it is isomorphic within the category 𝒮 , that is, the set

[|𝐼| − 1] is an object of 𝒮 and there exists a (unique) isomorphism 𝛼𝐼 ∶ 𝐼 ∼−→ [|𝐼| − 1]. The collection of all
these 𝛼𝐼 defines the natural transformation Id𝒮 ⇒ 𝐹 ∘𝐺 which is not the identity, but it is an isomorphism.

1.17 Example. Perhaps a more brutal example is to consider the category with two objects 𝑎 and 𝑏 and
exactly one morphism between any two objects. This category is equivalent to the category [0] with only
one object.

1.18. Natural transformations allow us to construct new categories from given ones. Let 𝒞 and 𝒟 be
two categories. We would like to consider a category Funct(𝒞 , 𝒟) with objects functors 𝐹 ∶ 𝒞 → 𝒟
and with morphisms HomFunct(𝒞 ,𝒟)(𝐹 , 𝐺) natural transformations 𝐹 ⇒ 𝐺. We have seen that we have
identity natural transformation and that the composition (vertical) is associative. The only problem is
that with this definition the Hom spaces may fail to be (small) sets!. As mentioned at the beginning
I will not deal with these issues in these lectures, but you can read about this in the bibliography. It
suffices to say that if we define a category to be small if the collection of morphisms is a set (in particular
the collection of objects is also a set) then if 𝒞 is equivalent to a small category, then the category of
functors above defined is a category.

1.19. Particular examples of the category of functors defined above are important. For example, if we
let 𝒞 be given by a partially ordered set 𝐼 . Then the objects of Func(𝒞 , 𝒟) consist of families of objects
{𝑎𝑖}𝑖∈𝐼 parametrized by 𝐼 as in Example 1.9 i). A morphism {𝑎𝑖} → {𝑏𝑖} consists of a family of
morphisms 𝜓𝑖 ∈ Hom𝒞 (𝑎𝑖, 𝑏𝑖) such that for every 𝑖 ≤ 𝑗 the following diagram commutes

𝑎𝑖

𝜙𝑎
𝑖𝑗

��

𝜓𝑖 // 𝑏𝑖

𝜙𝑏
𝑖𝑗

��
𝑎𝑗 𝜓𝑗

// 𝑏𝑗 .

where 𝜙𝑎
𝑖𝑗 and 𝜙𝑏

𝑖𝑗 are the defining morphisms as in Example 1.9 i).

1.20. There are other ways of constructing new categories from given ones. For example if 𝒞 is a
category, then we define 𝒞 𝑜𝑝 as the category with the same objects of 𝒞 but with morphisms

Hom𝒞 𝑜𝑝 (𝑎, 𝑏) ∶= Hom𝒞 (𝑏, 𝑎),

and obvious compositions.
We may define the category of arrows in 𝒞 with objects the morphisms of 𝒞 for a given pair of

morphisms 𝜙 ∶ 𝑎 → 𝑏 and 𝜓 ∶ 𝑐 → 𝑑 we define a morphism 𝜙 → 𝜓 to be a pair of morphisms 𝜉, 𝜐 such
that the following diagram commutes

𝑎
𝜉
��

𝜙 // 𝑏
𝜐
��

𝑐 𝜓
// 𝑑
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For a given object 𝑎 of 𝒞 we may define in a similar way the categories 𝒞/𝑎 and 𝒞𝑎/ to be the
categories with objects given by morphisms in 𝒞 𝑏 → 𝑎 and 𝑎 → 𝑏 respectively. I’ll let you think about
morphisms.

1.21 Exercises

1.21.1.Prove that the vertical composition of 1.12 is associative and that the identity natural transforma-
tion is a two sided identity for this composition.

1.21.2.Prove that the horizontal composition of 1.12 is indeed a natural transformation. Find a compati-
bility satisfied by the horizontal and vertical compositions of natural transformations.

1.21.3.Let 𝐹 and 𝐺 be inverse functors between two categories 𝒞 and 𝒟 . Let 𝐺′ be another inverse for
𝐹 . Show that there exists a canonical isomorphism 𝐺 ≃ 𝐺′ (don’t worry now about the word canonical,
just find one isomorphism).

1.21.4.Prove the statement in Example 1.17.

1.21.5.Check that the category of arrows defined in 1.20 is indeed a category.
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