Essential Dynamics for Lorenz maps on the real
line and the Lexicographical World *

Rafael Labarca and Carlos Gustavo Morcira

Dedicated to the memory of Professor Jorge Billeke G.

Abstract

In this paper we describe some topological and geometric propertics of
the set of sequences LW = {(a,b) € X x X150 < 0™(a) < b,a < o"(b) <
b,¥n € IN}, which essentially represents all the allowed dynamics for piccewise
continuous increasing mapsg with one discontinuity. In particular, we describe
the first main bifurcations in LW which generate non-trivial dynamics, and
we study (fractal) geometric propertics of LW and of the phasc spaces X,
associated to it.

Résumé

Dans ce travail nous décrivong quelques proprietés topologiques et géometriques
de 'ensemble de suites LW = {(a,b) € g x X1;a < 0™(a) < b,a < o™ (b) <

b,Vn € IN}, que répresentent essenticllement toutes les dynamiques permises
pour des fonctions continucs ¢t croissantes par morccaux avec un point de
discontinuité. En particulier, on décrit les premicres bifurcations dans LW

qui produisent des dynamiques non-triviales et nous étudions des proprietés
géometriques(fractales) de LW et des espaces de phase ¥, associés.

1 Introduction

In the remarkable work [13], a meteorologist, E.N. Lorenz, showed numerical evi-
dence of the existence of a strange attractor for a quadratic system of ordinary differ-
ential equations in three variables. Some time later J. Guckenheimer, [7], produced a
work where he introduced symbolic dynamics in order to understand the topological
equivalence classes for nearly similar attractors. At that time R.F. Williams, [27],
introduced a gcometrical model in order to understand the dynamics of these Lorenz
attractors. In Figure 1 we give a sketch of the geometric attractor. Morcover, in
Figure 2 we represent the one-dimensional models associated to the attractor. The
right hand side of this picture corresponds to the numerical experiments of Lorenz,

*Partially supported by Fondeeyt-CHILE grant # 1000098 and PRONEX-BRAZIL on Dyna-
mical Systems. Brail



i

\\\
i) \$ it

Figure 1: Geometric Lorenz attractor

who used a cross-section different from that of Guckenheimer and Williams, who
obtained a map as in the left hand side of the figure. The combinatorial dynamics
of both one-dimensional maps sketched in this figure are equivalent. In this work
we will concentrate our attention on piecewise increasing one-dimensional maps.
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Figure 2: One-dimensional return map

Using this geometrical model the dynamical behavior of the three-dimensional
vector ficld can be reduced to the dynamical behavior of a one-dimensional map
with one discontinuity and Guckenheimer and Williams, [8], used this fact to show
uncountable many classes of non-cquivalent geometric Lorenz attractors.The cvi-
dence of the non-equivalence were the kneading sequences associated to these one-
dimensional maps. The class of one dimensional maps defined in this way is included
in the class of one dimensional maps which we work here(see the definition of the
set DMy given in section 2.1).

Associated to any f € DMy we have two kneading sequences (ay,by) = I(f)
(sce section 2.3 for the definition of these sequences) that satisfy ay = inf{o*(a;) , k €
N} by = sup{o®(by), k € IN} and {ay, by} C X4 4, (here Xy, denotes the sct
N<,o'([a,b]); see section 2.3 for details). These properties inspired (see [23])the
following definitions. A sequence of two symbols ¢ = (0,...) € 3y (resp. b =
(1,...) € ¥y) is called minimal (resp.  mazimal) if a = inf{o*(a), k € N}



(resp. b = sup{c®(b), k € IN}. Here o : ¥y — Y, denotes the usual shift
map. We will denote by Mins (resp.  Maxzy) the set of minimal(resp. maxi-
mal) sequences in Yy. These two properties allow us to define the Lexicograph-
ical World as LW = {(a,b) € Miny x Maxy, {a,b} C ¥,,}. The itinerary
I:DMy— LW . f— (a;.b;) defines a continuous and surjective map(see section
2.5). We will say that the map f € DM, has essentially the same dynamics as
g € DM, if I(f) = I(g). It is clear that two topologically equivalent maps are
essentially equivalent.

Notice that one of the main topological obstructions for two maps in DM
with essentially the same dynamics being conjugated is the presence of wandering
intervals for some of these maps. We prove in Proposition 1 that generic C? maps
in DMy do not have nontrivial wandering intervals.

Therefore, the lexicographical world provide a wuniversal model for (essentially)
equivalent dynamics in this context. This means the following: given (a,b) € LW |
there is f € DM, such that X, , = Z%bf and a surjective map [y : 'y — X, such
that I; o f = o0 o I; and reciprocally ( see section 2.3 for the definition of the set
Iy, the definition of the map I, and the proof of the realization lemma). Clearly,
if we arc able to describe the different dynamics present in this universal model
then we are able to prove some dynamical properties of the elements in DM, . Also
our set, DM, contains the topologically expanding Lorenz maps as defined in [9)].
The kneading sequences, (a,b) € LW associated to expanding maps satisfies the
condition a < 0™(a) < b and a < o™(b) < b,¥n > 0. Let denote by TE C LW
this set. One of the problems posed in [9] is to describe the set TE. In Section 4
we characterize the local fractal properties of TFE (and LW ).

In these directions are the main results of the present paper: we describe some
metric and geometrical properties of the lexicographical world which 7 essentially
represents all the allowed dynamics for piccewise continuous increasing maps and
we use these properties to establish some results for the clements in DM, . For
instance, among other results, we prove

Theorem 1 The maps ¢, ¥, x, : Miny — Maxy given by
ela) = inf{be > %, , #0}, vla) = inf{be Xy X, is infinite} and

x(a) = inf{b e 3y : 3, , is uncountable}
satisfy the following recursive formulas(see section 3 for the definition of the maps
Typ and TF, )

(i) — (1.-) for a <001 we have Op(a) =Ty o ooy (a),
— (2.-) for 01 < a < 0l we have ¢(a) = Tig10po Ty, (la) .
— (3.-) For 001 <a <01 we have ¢(a) = 10.

(i) — (1.-) for a <001, x(a) = ooTygoxolyyla),
— (2.-) for 001 <a < 00110 ;x(a) = 1To1 100 x © T3 19(0(a))
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— (8.-) for 00110 < a <01; x(a) = 11(

=

— (4.-) for 01 <a <01; x(a) = Tw1oxoT}, (la).

(ir)  — (1.-) for a <001, ¢¥(a) = ooTypowoTyy(a),
— (2.-) for 001 < a < 00110 , ¥(a) = 1T 100 ¢ o1 1olo(a)),
— (3.-) for 00110 < a <01 . ¥(a) = 110 and
— (4--) for 01 < a <0Lwe have ¥(a) = Tig 0o Ty (la).

We notice that {(a,b) € Xgx X1 %,, Z0} = {(a,b) € XgxX1: 0> pla) }.

Another characterization of the map y is given by the following

Theorem 2 The set {(a.b) € g x> ; the topological entropy of the map (ol ,) :
b — Napis zero} is equal to the set { (a,b) € Yo x 3135 b < x(a)}.

We observe that a consequence of the theorem 2 is the following: The set EZy =
{ maps in DM, with zero topological entropy } is equal to the set {f € DMy; by <
x(ay) }(we observe that related problems of characterizing the boundary of the set
of maps of zero entropy were focused by sceveral authors in this and other contexts;
see for instance [2],[24],[20],[15],[25],[5],[21],[22]).

Also we prove the following result about(fractal)geometric properties of LW :

Theorem 3 Let D : ¥y x X; — R be the map defined as D(a,b) = HD(X,,),
where HD(X, ;) denotes the

Hausdorff dimension of the set ¥, , (here we consider the set Xo X ¥ eqquiped
with the usual diadic metric; see section 2.2).then D is a continuous map.

For (a,b) € 3y x Xy define Q(a,b) = {(a.0) e LW:a<a<F<b} and
Qa,b) = {(a,8) € Qa,b); («.8) € TE} then HD(Q(a,b)) = HD(Q(a, b)) =
2D(a,b) = ﬁhmp(za b) (here ht()p<za,b) means the topological entropy of the
restriction of the shift map to the set X, 4 ).

Clearly, the described structure of the set LW reflects in the bifurcation the-
ory associated to any parameterized family of maps in DM, (also an extremely
interesting problem focused for several authors in this an other contexts, sce for in-
stance [14],(2],[1],[4]). In [10], [11] and [12] we applied these results for contracting,
expanding and lincar familics of Lorenz maps.

This paper is organized as follows : In section 2 we introduce the lexicographical
world, we describe the set DM, (that we recognize as the set of Lorenz Maps) and
we prove the realization lemma. In section 3 we prove theorem 1 and part of the
theorem 2. In Section 4 we prove theorem 3 and we complete the proof of the
theorem 2.

There are several works related to the symbolic dynamics associated to one
dimensional Lorenz maps. For instance, in the papers by Hubbard and Sparrow
([9]) and Glendinnig and Sparrow([6]) a study of the symbolic dynamics associated
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to topologically expansive one-dimensional Lorenz maps is performed. We note that
the equality D(a,b) = ﬁfzmp(za,b) follows from results by H. Furstenberg([3])
and also by Urbanski([26]).

2 Lorenz Maps and Symbolic Dynamics

2.1  The Set DM,.
In the sequel DM, will denote the set of maps f: (R\ {0}) — R such that:

(1) The restriction maps f| o0 : (—00,0) = R and fl) : (0,00) — R are
continuous and non-decreasing maps.

(2)

FO07) = lim £(2) € (=,

fF(07) = lim f(z) € [0, o0

2.2 The Lexicographical Order

Let 3y denote the set of sequences 6 : IN — {0,1} endowed with the topology
given by the metric

dla, 3) = o
where

n=min{k € IN; oy # 0}

Let o : 3y — ¥y be the shift map o(0y,0;,0,...) = (61,05,...). Let ¥y and >
denote the sets {6 € 35 1 0y = 0} and {0 € 35 1 0y = 1} respectively. It is clear that
EQ = EU U E] .

In >y we consider the lexicographical order: 0 < o foranyf € Ypand o € X or
0 < «if there is n € INsuch that 0; = «o; fori = 0,1,2,...,n — land#, =
0 and o, = 1.

For a < b in ¥y let [a.b] denote the interval {0 € Ysla < 0 < b}. X, , wil
denote the set (12,0 "([a.b]).

Let a = ag,a,---a, bea finite word. We will denote by a the infinite sequence
((107 A1y - U Ao, A1, 0 0 2 Ay Gos A1, 00 - Ay o ) € ZQ .
2.3 The Set X, ..

For f € DMy let Ty = (R\ ;2 f77(0)) denote the set of “continuity” of the map
f |



For x € T'y we define I;(z) € Xy by
I(2)(@) =0 if fi(z) < 0and I;(x)(i) =1 if fi(x) > 0.

For x = 0 we define:

007 = i ()

and

I/(07) = lim  I(z).

210,z€ 1’y

In the same way to any = € [J2, f77(0) such that fi(x) # 0, 0 < i < n;
f™(x) = 0 we associate the sequences :

I(5%) = (@) (O), .. (@)(n — 1), 15(07))
and
1) = (IH@)O). ..., Ip(w)n — 1), 14(0°).
For x € I'y we define [p(27) = I;(x7) = I;(x).

Lot Iy = {I;(z"); o € [(0), SO} U{Ir(a ) = €F(07), F(O)]}-
Let us denote ap = I ((f(07)") and by = I¢((f(07))7). The following lemma

is a classical fact which associates a symbolic dynamical system to a Lorenz map on
the interval, via kneading sequences. See, for instance, [23].

Lemma 1 [; = ﬂf;o o "(lay, by]) = Eflfvbf'

Proof: We have I,(f(x)) = o(I;(x)), by definition of I;(x), so o({;) C I;. This also
implies that, since Iy C |as,bf], Iy C 0 "(lay, bs]) for every natural number n. Let
now 0 € (\°_,0 "(lay,bgl), that is ap < 0™(0) < by forn = 0,1,2,---. Clearly
we must have a; < o"(0) < 0by or lay < o™(0) < by for every n = 0,1,2,---.
Let Iy = [f(0%),0[andI; =10, f(07)]. The opposite inclusion follows from the
following facts:

(i) 1p(07) = lay, I;(07) = Oby;
(i) Ly, N f YN f2(Ig,) N -0 f(Iy,) #0 for n = 0,1,--- and

(iii) the continuity of the map f on Iy U I} 0.

We observe that associated to any f € DMy we can define a continuous map
(see [17] for details)
CTEHOEY £
B [f07), fO)NTy — 3, 4, C ¥o,
such that ho f = o o h. The map h is given by h(z) = I;(z) and could collaps
some intervals into points. This map cannot be extended, continuously, to the set

Uo7 (0).



There arce two kinds of intervals that arc collapsed by the map h: The wandering
intervals and the intervals that are contained in the stable manifolds of the periodic
sinks. An interval I C [f(07), f(07)] is called a wandering interval , for the map
f, if for any x € I we have that x is a wandering point. We will call a point = a
nonwandering point if for any neighborhood U, of z and any positive integer N we
can find n > N such that f"(U,) N U, # (). The set of nonwandering points of the
map f is denoted by Q;. A point ¢ Qf is called a wandering point. Given any
interval I, the orbit of this interval is the sequence of iterations (f"(I),n € IV).

We say that a wandering interval is non trivial if it is not contained in a basin
of attraction of a periodic orbit.

Concerning the existence of wandering intervals we have the following:

Proposition 1 Let {¢y, A € R} C DM be a one parameter family of C? piccewise
increasing maps (for instance, elements of DMy) such that for each A there are
sequences A, — A and f, — A with ¢y, (x) > ¢a(x) and ¢, (x) < er(z), Ve then
there is a residual set of parameters A for which ¢y has no non-trivial wandering
intervals.

Proof: The orbit of any non-trivial wandering interval must accumulate in the
discontinuity ( it is a consequence of the Schwarz lemma or of Marié’s Theorem on
hiperbolicity for one dimensional maps; see [17] ). To get the result it is enough to
prove that for any a,b € Q, with a < b the interval Ja,b] is not contained in a
wandering interval for an open and dense set of parameter A. If, for some parameter

A the interval Ja, b] is contained in a wandering interval then its orbit accumulates
the discontinuity. Assume that 0 is accumulated by the left side by the orbit of
the interval |a,b[. Let A, — A be the sequence, associated to A, given by the
hypothesis. Since ¢y, > ¢ we can find an iterate of Ja, o[, say 5" (Ja, b]) such that
@i (Ja, b)) €] — 00,0 and ,ci’i (Ja, b)) CJ0,00] (since the lenght of ¢"(]a, b[) must
converge to () and all the maps ¢, are increasing). Joining A to A, by a continuous
path we find a parameter value, p, between Aand A, such that @5 (Ja, b[) contains
Oand then a,b] cannot be contained in a wandering interval for ¢, . The same is
truc for parameters near p, and also p, — A as n — oc. This completes the proof
of the proposition.

Remark 1 .- The previous argument also shows that the set
{f € DMy; f has no non-trivial wandering intervals}
s residual in DMy.

b.- The result is true also with an arbitrary number of parameters.

Definition 1 Let f,g € DMy. We will say that [ has cssentially the same dynamics
as g if Iy = 1,.

We observe that in this situation, up to the existence of some intervals where
the itincraries of the points arc the same, the dynamics of the maps f and g arc
topologically equivalent(see [17]).



2.4 The Lexicographical World

Let Miny = {a € Xy ; 0%(a) > a ,Vk € N }and Mazy = {b € %y ; o"(b) <
b ,Vk € IN}. Elements in Ming(resp. Maxs)will be called minimal(resp.maximal)
elements in 3.

Remark 2  1.- Assume that a € Y is a periodic sequence in Ming. Let agay - - - a be
its period. Then, necessarily, we have ag = 0 and ap = 1.

2.- Assume that b € ¥y s a periodic sequence in Miny. Let boby - - - by, be its period
then, necessarily, we have by = 1 and b, = 0.

3.- Clearly, Mins and Maxs are closed sets in Xy,

Definition 2 The set LW = {(a.b) € MingxMaxs ;{a,b} C 3, ,} will be called
the lexicographical world.

For a € Miny its LW-fiber is the set LWy(a) = {b € Maxs ; (a,b) € LW}.
For b€ Maxy its LW-fiber is the set LW (b) = {a € Ming ; (a,b) € LW }.

Remark 3 It is clear that if (a,b) € LW then X, # 0, since it contains {a, b}.

2.5 The realization Lemma

Let us now consider (a,b) € LW.

Lemma 2 There is f € DM,y such that Iy = X,

Proof: Let us consider the map g: (R\ {0}) — R given by

{2:171, x>0

g(x) = 20+ 1, <0

In this casc [, = ¥y. Let x, < 0 and 23, > 0 be the points such that [,(z)) = a,

Iy(x,) =bLet 2, <Tp < 0 < T, < a3, be the points that satisfy ¢(7;) = 23 and

Let f: (R\ {0}) — R be the map defined by:

g9(x), r<Ty
L m, <o <0
) = Ta O0<z <z,

g(x), Ta< T

The map f satisty Iy = X,;. In fact:iar = a, by = b and the itincrary, 0, send
points in the set {z € [z,, Ty U [T, 1) (= Jy); f*(x) € J;¥n € IN} into points in
I; which is equal to ¥, O.

Therefore, we have a surjective map [ : DMy — LW, I(f) = (ay, by). Also, using
C? proximity of maps in DM (with respect to fli_aco and  f|pee[) o1 compact
sets, this map is continuous.



3  Structure of the Lexicographical World

3.1 The Maps ¢, ¥, x

It is clear that 3,; # 0 for any a € ;. Hence we can define maps
., x g — X by

gp(a) ES Hlf{b € 21| Za,b 7& @}

¥(a) = nf{b e X, ¥, , contains infinitely many elements}
and

x(a) = inf{b e Xy 3, , is uncountable}.

Clearly, a; < ag imply ¢(a1) < ¢lag) ,¢¥(a1) < ¥(ag) and x(ay) < x(az) and
for all ¢ € 31 such that ¢ < ¢(a) we have Ea =0 Vioreov er, for any a € Xy we
have that la < ¢(a) (in fact, any b < la satisfy b ¢ 3, 4 for any d € Xy ).

Examples : We have: ¢(0) = ¥(0) = x(0) = 10;¢(01) = (01) = 1.
If ¥, is uncountable then we can define
a = inf{f € 3, . 0 is a condensation point of 3, , }
and )
b =sup{f € ¥,,, 0 is a condensation point of ¥,, } .

Let us recall that a condensation point of a set X C Xy is a point with the
property that any necighborhood of it contains an uncountable subset of X.

It is clear that the set (X,, \ X, ;) is countable, since it has no condensation
points, and we have

<o™a)<band @ < o™(b) <b.¥neN,

j 3}

so, by [9], X, ; is a perfect set and the restriction of the shift map, oly 5o 18
Ly a,
topologically expansive.

We observe that for any a € X we have g(a) < ¥(a) < x(a).

3.2 The Recurrence Formula of the maps ¢.vand y.

Let mg < my be two finite words of 0’s and 1’s. Let 15, m, @ 22 — X3 be the
map Ly my (0o, 01....) = (Mg, . e, ,...) . About this map we make the following
considerations:

(1‘) (—)l S (_)2 ilnply CTmo,ml <(—)l) S CTmo,m1 (62) ;

(2-) If X = {0 IN — {mg,mi}}then T, 1, (32) = Xy m, and it s an
homecomorphism onto its image. The inverse map is constructed in the follo-
wing way: let e(mg) = 0 ,¢e(m) = lfor a € Xy, 1, we have T, 0 (a) =
(elag) ,elar),...) .



(3.-) An extension of the map 7,,! . is given by the map Ty, defined, for o <

my . as T () = inf{8 € Xo: Ty i (3) > a} .

mo M

(4.-) We define the map 0y m; @ Zmgmi — Zmg.mis DY

Omg,m (Tmo,ml (CL)) - Tmo,ml (O—(a))a Ya € P

Proposition 2 The map ¢ satisfies:
(1.-) for a <001 we have Op(a) =Ty o1 0o ly g (a),
(2.-) for 0L < a < 0lwe have ¢(a) =Tip10¢ 0Ty (la) .

(5.-) For 001 <a <01 we have ¢(a) = 10.

Proof: Let us prove (2.-). By the definition of ¢, ZT]O L(1a), (T3, (1a)) 18 a non-
empty set. Hence, T10,1<ZT1*0 L(la) (T3, 1(1(1))) is an nndndnt, non-empty set for

O1p,1 1 210,10 — X10.1- 90, since T 1 is a conjugacy between o and oy 1,

Trioa(Xrs L(1a) ¢(T1*0_1(1a))) J O—(Tlo,l(ZTf‘otl(la) ,¢(T1*011(1a))) )

is a non-empty, invariant set for o. Therefore ¢(a) < Tip10¢ 0T, (la) .

It pla) <Tigropolyy (1a) then [la,w(a)]N¥a o #@ and Ty 1 ([la.(a) N

Yu () C [Tf‘ojl(la)7;,9(T1*071(1a)[) s a non-empty, (r—invariant set (since a > 01

implies X, 1NYy C gy 1, and so, in particular, ¢(a) € 319 1). This is a contradiction.
The proof of (1.-) follows in a similar way since 0 # 3, 01 N 3o C Xg o1

The proof of (3.-) follows from EO 10 # 0 and ¢(001) = 10 which gives 10 =

©£(001) < p(a) < ¢(01) <10, Va € [001,01]. O
Note 1:
(i) We observe that ¢ is not a continuous map since lim, g+ ¢(a) = 110 #
10 = ¢(01). In fact, for a, = (01),011 we have that ¢(a,) = 1(10),11

Therefore a, — 01 dlld ¢la,) — 110.

(ii) As a consequence of the proposition 2 we note that the graph of the map ¢ ia a
kind of 7 devil stair” (althought not continuous) in x> @ it is locally constant
in an open and dense set. In fact, let A denote the map Ty 1, B denote
the map o o Tjpand I be the interval [0010,01]. Let A, = I,A4; =
Ag U A(Ap) U B(Ag), Ay = A; U A(A)) U B(Ay) and, inductively, A, =
A, UA(A,) U B(A,). Tt is not hard to see, from the recursive formulas at
proposition 2 that the set A, = [J° A, is a dense set in Xgand (p],) is
constant for any interval J C A,

Proposition 3 The maps x and ¥ satisfy :
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(a) for a<00L, x(a) = ooTpooxoTyyla).
(b) for 001 <a < 00110 :x(a) = 1Th 100 x o Ty 19(o(a)).

(c) for 00110 < a <01: x(a) = 110,

(d) for 01 <a <O0L; x(a) = Tig1o x0T} (la).
(a’) for a <001, ¥(a) = oo0Tymotoly(a),
(b7) for 001 < a < 00110 , ¥(a) = 1Tp1 100w o1y, p(o(a)),

(¢’) for 00110 < a <01, ¥(a) = 110 and

(d°) for 0L < a <0lwe have ¢(a) = Ty ot oTYy (la).

Proof: Let us first remark that if X,, # 0and a > 00110 begins with 00 then
b > 0?(a) > 110. If a begins with 01 then there is no pair of consccutive 0’s in
any clement of ¥, ,, so for the interesting @ we have a > 01, and if b begins with
11 then (for the interesting b) we have b > 110. If b begins Wlth 10 then there is
no pair of consccutive 1’s in any clement of Emb, so b < 10 in this case and, hence
Yo C o110 = {01,10}is finite. This implies x(a) > 110 and ¢(a) > 110 for
a > 00110.

To show that x(a) < 110 for a <01 it is enough to notice that the set o1 1¢10)n
is uncountable for cach n € N,

The proof in the cases @ < 001 anda > 01 is analogous to the previous proof for
the map ¢

In the case 001 < a < 00110, 11001 < b <110, let C,p = {r € X,,,01l <z <
10 }then C,, C o110, and the first return map of o to the set C,1is o2, that
is Tor1000%0 15 g restricted to Cyy . Moreover, Y, = [a,b] N Myeno " (Cop) S0
Yo p 1s uncountable if and only if C,;is uncountable, and X, ; is infinite if and only
it C,is nonempty. This gives the result.O

Now, theorem 1 follows from propositions 2 and 3.

Note 2:

(1)) Themap ¢, x are discontinuous. In fact, for a, = 001(01),, we have x(a,) =
(10),101001(01),, and then we obtain lim, .. x(a,) = 10 # 110010 =
x(00101) . Also, for «, = 00(10),11 we have w(«,) = 1100(10), and then
we get lim, o ¥(a,) = 110010 # 10 = ¥(0010).

(i) As a consequence of proposition 3 ( (a),(b).(¢) and (d)) we observe that the
graph of the map x is a devil stair in 3y x 37 . In fact, let A denote the map
Ty o1, B denote the map o 0Ty 1, C denote the map 074, 10 and J be the
interval [001101,01]. Let Ay = J; A} = AOUA(AO)UB(AO)UC’(AO) Ay =
ATUA(A)UB(A)UC(A)) and, 1ndugt1xely Apn = AL UA(A)UB(A)U
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C'(A,). Now it is not hard to see that Ay = U, A, is a dense set in X
and (x|,) is constant for any interval L C A.

Simmilarly, as a consequence of proposition 3((a’),(b’),(¢’) and (d’)) we verify
that («|,) is constant for any interval L C Ax.

(iii) We observe that the map ¢ is lower semicontinuous while the map x is upper
scmicontinuous.

To complete the proof of the theorem 2 let us prove the following

Proposition 4 Let x(a) = inf{b € X1 ; X, is uncountable}. Then, for any b >
x(a) the topological entropy htop((f‘xa u) of the restriction of the shift map, o . to
Y4 b 1S positive.

Proof Let b € ¥y be such that x(a) < b < b. By the definition of x(a), >, 5

is uncountable. Let n € IN be such that d(g,b) = s, and let A = {a €

{0,1}"; o appears as a subsequence of (n+1) consccutive terms of some clement
g e Ea,g} .

Let Mjbe the matrix (@og)agea given by a,g = 1 if every subsequence of
(n+ 1) consecutive terms of af belongs to A and a,5 = 0 otherwise.

Let ¥4 = {mapag--- | € A, anya,,, = 17¥i > 1} be the subshift of finite
type induced by M, . Since X, ; is invariant by o, X4 is also invariant by o, and
since Y, ;is uncountable, and > ; C 34 then 3, is also uncountable and we have

htop(z/l) > (), because i, is a shift of finite type.

Notice now that X4 C X, ;. Infact, forany 6 € X4 thereis 0 e >, ; whose first

(n+1) terms are the same as those of 0, so d(6,0) > 5ty . Since d(b,b) = &, b>

band b> 6, we have b > 6. So, we conclude that htop(Xab) = hyop(Xa) > 0 0

4 Hausdorff Dimensions and the Lexicographical
World.

Woe will discuss in this section some results on gecometrical propertics of invariant sets
for shifts as the scts X, ; and of the natural parameter space associated to them. We
will study the Hausdorftf dimension of such scts, which cquiped with natural diadic
metrics, and prove a general result of continuity. In the case of X, 5, the Hausdorff
dimension is related to the topological entropy. The continuity of the topological
entropy in related cases was studied by Urbanski([26]) and also by Misiurewicz and
Szlenk([18]), among other authors.

In this section N,(a,b) will denote the number of different sequences of size
n that appears as a subsequence of some element in %, , . Clearly, Ng,(a,b) <
(N (a, b))k, Vn.,k € IN . In this situation, since N,(a,b) is an increasing function

12



{og(Nn(a b))
n-log(2)

exists and is cqual to inf,cpn+ % In-
log(Ny (a b)) log(Ny.rnyk (a b))

' n—oo  n-og(2) n-log(2)

< lim,, o 7]:’(12%1)’*15)’;(?)) = lngkgf;;fg(((;sl))). We will denote by D(a,b) this number. No-

tice that D(0, 1) = 1.

of n, the number lim,,_

deed, given a natural number £, lim sup < limsup,,

Definition 3 A complete shift is a subset, 3(3), of Xy obtained by arbitrary con-
catenations of elements of a fived finite set of finite words B.

Now we have the following lemma, assuming D(a ., b) > 0 analogous to the main
lemma of [19].

Lemma 3 Forany a,b € Yo with a <01 <10 < b and ¢ > 0 there are sequences
a < c<0l<10 <d < b anda complete shift contained in . 4 with Hausdorff

dimension at least D(a,b) —¢.

Proof: Fix a large ny € IVand let B, be the set of sequences of size ng that

appear as a subsequence of some element of 3, ,. Let N = N, (a.b) = #(B,,).
- . 5 log(Np(a,b .
Without loss of generality we may assume that the number d = %;70(1((2))) is very

, D(a,b ‘
< (QN ) . Let k = 2N?%. We note that the
D(a,b) d

close to D(a,b),s0 A :=1—

set DBgp, has (at least) 2knol(ab) elements. An element of By, can be written as
3105... 8, where 3, € By, fori =1,2,... k.

Let v = 3105...0bc an clement in By,,. We say that 3, € B,, ,2 <
i < k — 1is good if there arc words 3% € By,,,s € {1,2} such that 36 =
‘6] 32 e sgiﬁiikl (®) e ‘B“k(s)’ and B(Q) = “{’);l (8)332(8) e 62’:1 (S)ﬁiﬁidkl e ‘;Lf))k such that

A~ (1) . ~ (2
G < B < B
We can prove, as in [19], that at least Zk elements [; of most words v € Dy, are

good. Indeed, we can estimate the number of sequences in By, for which there arc

k
(at least) 1 positions 2 <) < iy < --- <ij < (k—1)suchthat J; is not good for

k k
1< < 1 as follows: there are at most ( > < 2F choices of the 1,1 <5< 1

k
k/4

good for 1 < j < k/4is bounded by 2F/AN3#/1 << NI/5 << gknoliab) < (B, ),
since at the positions ; we have at most 2 choices of §; (the extreme options) to
continue the sequence.

and, given a choice of i;, 1 < j < —, the number of sequences for which 5 is not

. . 3 ~
For cach of these words, in which at least Zk = iNZ clements are good we can

with 4, — i, > Nfor r = 1,2,..., 5
2
The number of such words is N7¥ with p close to 1( and bigger than A). We note,

choose good clements 3;, , 3, ...

13



as in [19], that there are : a fixed set of indexes {iy,is,... iay Pa{l,2,..0 k)

I3

with 4,41 — 2, > Nfor 1 <r < and a subset {3, , 55, .. Bisn } C By, such
z
that for at least \ \
NP¥ NP¥ .
3N > 3N > ‘Np g
2 3N T T -
2 N5 (kN)
(with pstill close to 1 and bigger than X ) elements i, ..., 8 of By, we have
o 3N ,
3. = (3. and it is a good clement for 1 < r < - ( here we have used C? =
2l
rl
e P,
pir —p)!

Let us call the set of these sequences B*. For 1 < r < s < 7let
T s 1 BY — By~ be defined by m (o, .o o) = (01,00 o).

o 3N
If #n,,(B*) < NMie=) we exclude from {1,2,... 7} the set of indexes

H

{r.r+1...,: ;— 1 }. The total number of indexes excluded is less than 5 , provided

that p’ is close enough to 1 ( otherwise B*would not have so many elements), so
o . 3N
there is a set of indexes {jo,71,...,i8v} C{0,1,..., 7} which arc not excluded,

and there are r < s such that J;, = 3;, .

The promised complete shift is X(A), where A = 7, (B*) is a set of at least
N3 =i50) wwords of length mg(i;, — i;.), so the Hausdorff dimension of $(A) is at
least (log(N M=% /ng(i;, —i;)l0g2) = (X -logN/nglog2) > D(a,b) —e. Hence,
in this way, we conclude the proof of the lemma. O

We will use this Lemma in order to prove
Theorem 3 With the diadic metric, defined wn section 2.2, for every
(a,b) € g x Xy, HD(X,}) = D(a.b) = lim,, .« %
tion of (a,b). We have D(a.b) = hiop(ols, ,)/log(2). Moreover, Q(a,b) = {(«. 3) €
LW:a < a < 8 <0b} and Qa,b) = {(a.8) € Qa,b); 0"(a) < fand o <
o™(B)¥n € IN} have Hausdorff dimension equal to 2D(a,b).

18 a continuous func-

Proof: Let us notice, that a finite sequence that appears as a subscquence of
some clement of X, gfor ¢ < a < b < d for ¢ and d arbitrarily ncar aand b
docs appear as a subscquence of some clement of X, , by compacity. Hence, for

each n € INwe have limg, g5 No(c,d) = Ny(a.,b). Also, for each n € IV,
the number % is an upper bound for HD(X, ;). All of this imply that
HD(X,;) = D(a,b); that the Hausdorfl dimension is a continuous function of

(a.b) and that X, , can be approximated, from inside, by complete shifts with
almost the same dimension.

Let us now show that Q(a,b) = {(«,3) € LW ; a < a < 3 <b}and Q(a,b) =
{{a, 8) € Qa,b); o™(a) < Fanda < ¢™(F)Vn € IN} have Hausdorft dimension
equal to 2D(a,b) .

14



We can suppose, without loss of gencrality, that all the finite sequences
(81,085, ..., k) that generate the referred complete shift(see previous lemma) con-
tained in 3. 4 have a large number of clements. Let us denote by Y this complete
shift. Consider the o-invariant subshift 3 = Upcpo™(%) . Let @ (resp.3) be the

smallest (resp. the largest) element in .. Take a large initial finite sequence ~ (resp.

i

7 ) of @ (resp. 3) ending with some of the ;. Wehave & = 4533 ... (resp. 3 =
~3"5"6" ... ), where 3 and 3" arc the smallest and the largest clements in
{B1,08s.....0:} respectively. Now, let B = {#1,55....5, \ {3 ,3"}. Hence,

provided that the sequences J; are large enough, we have that HD(3(B)) > D(a,b)—
2¢, and ¥, x Y= C Qa,b) C Qa,b)where the sets ¥ = {730 ; 0 € (D)},
Yo = {7370 0 € X(B)} satisty HD(X,) = HD(YX~) = HD(X(B)) > D(a,b)—
2e.

In order to see that 3, x %y € Qa,b), take any (a.f) € %, x %y, Given

ne N, o"(3) = 7615203+ where the size of 7 is smaller than the size of the J;
e 7" . ~ P . P A A AT At
and 3; € BU{ 3 } forcach i,so §; > 3 . In particular, o"(3) > 7533 3 83 -+ >
! 1 " 1 . ’ . . . e . .
~3 535 -+ > af since y3 is the smallest possible initial segment of its size,

which is larger than the size of 74", of an clement of Y). Analogously, ¢"(a) < 3
for each n € IV. Simmilar arguments show that o™(a) > « and ¢"(8) < 3, Vn €
IN.

Therefore, HD(Q(a,b)) > HD(Q(a, b)) > 2D(a,b) — 4e for all ¢ > 0.

On the other hand it is easy to see that Q(a b) C Qa.b) C X, x 3, pand thus

HD(Q(a,b)) < 2HD(Y,,) = 2D(a,b), since %is also an upper bound

for the limit capacity of X, ,and converges to D(a,b)asn — oc.

We may also notice that, by the arguments which preceed the Lemma 3 of [26],
we have D(a,b) = HD(3, ) = hop(oly, ,)/log(2), where hyp(oly, ,) denotes the
topological entropy of the restriction of the shift to its invariant subsct Yop O

Remark 4 In general the local dimension of the set Q(a,b)in a point («,3) €
LW is not necessarily equal to 2D(c, 3) but it is at most this value. For instance,
when (03, 1«) is properly renormalizable (see [6] Jthe local dimension at («,3) can
be smaller than 2D(«, 3) .

We also note that the set Q(le) = TE is the set of all the sequences (« , 3
that satisfies the Hubbard-Sparrow conditions (see [9] ): we have HD(Q(0,1)) =
2HD(Xg 1) = 2. The preceeding theorem implies that the set, S . sketched in figure
3 of [9], has the following property : given s € (0,2, there is P = («,3) € S
such that HD(S N ([, 01] x [10,5]) = lm o HD(SNB(P.¢)) = s, so the local

3

dimension of S at a point P can be any number between 0 and 2.

Proof of the Theorem 2 Let (a.b) € LW . If b < x(a).X,, is countable,
50 htop(oly, ) = 0. The continuity of D(a,b) = @htop(g‘xa,b) implies that
ht(,()[))((f X”((a)) = (. Finally, proposition 4 gives ht0p<0|2a,b) > () for each b >
xla .
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