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Abstract. In this paper we study advancing front methods for surface reconstruction. We propose a topological
framework based on handlebody theory to implement such methods in a simple and robust way. As an example
of the application of this framework we show an implementation of the Ball-Pivoting Algorithm.

Triangulating the Stanford Bunny using the Ball-Pivoting advancing front algorithm.

1 Introduction

Surface reconstruction is an important problem in Geomet-
ric Modeling and Computer Graphics and received great
attention in recent years. The research in this area has been
stimulated mainly by 3D Photography applications that be-
came popular with advances in three dimensional range
scanner technology.

Typically, surface reconstruction methods generate a
continuous surface by means of a triangle mesh that in-
terpolates a set of points in space. The advantage of the
triangle mesh representation lies in its simplicial structure
that gives geometrical and topological information about
the surface.

Methods for surface reconstruction can be classified
into four categories, according to Mencl and Muller [12]:
spatial subdivision methods (cf. Boissonant [14]); distance
function methods (cf. Hoppe et al [13]); deformation meth-
ods (cf. Zhao et al [15]); and incremental methods (cf.
Bernardini et al [1]).

The advancing front triangulation algorithm is one of
the most powerful among the incremental surface recon-
struction methods. It is based on growing a surface by mov-
ing its boundary curves until the geometry and topology of
the whole object is captured.

The main difference between algorithms in this class
concerns the criteria used to advance the front. Boissonat’s
surface contouring algorithm [14] starts with an edge and

iteratively attaches triangles at boundary edges of the emerg-
ing surface using a projection technique to generate mani-
folds without boundaries. Mencl and Muller [16] use graph
techniques to complete the surface. Bernardini et al [1] de-
veloped the Ball-Pivoting algorithm which grow the sur-
face locally exploiting properties of alpha shapes.

In this paper we propose a topological framework for
the analysis of advancing front triangulation. This frame-
work is based on handlebody theory and provides the key
concepts to understand the computational principles behind
the algorithm, as well as, the basic operators for a roubst
implementation.

The handlebody theory has been an important tool for
geometric modeling and most recently for mesh compres-
sion [6]. When used in conjunction with stellar theory, it
forms the basis for atomic operations on manifolds with or
without boundary [11].

The rest of the paper is structured as follows: Sec-
tion 2 gives an intuitive description of the advancing front
triangulation algorithm. Section 3 reviews the main con-
cepts of the handlebody theory. Section 4 shows the rela-
tion of handlebody theory with the advancing front algo-
rithm. Section 5 shows how handlebody operators can be
used in a simple and robust implementation of the Ball-
Pivoting advancing front triangulation. Finally, Section 6
concludes the paper with examples of triangulated data-sets
generated with the Ball-Pivoting algorithm.



2 Advancing Front Algorithms

In surface triangulation using advancing front methods [2,
3], the mesh is constructed by progressively attaching tri-
angles to the mesh boundary using some geometrical cri-
teria (see Figure 1). The mesh boundary is composed of
closed loops of piecewise linear curves. This set of bound-
ary curves forms an advancing front which is the border
between meshed and unmeshed regions of the surface. The
iteration of the basic step of incorporating triangles to the
mesh boundary results in a propagation of the front that
terminates when the whole surface is covered by the mesh.
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Figure 1: The basic idea of an advancing front method.
Dashed lines represent interior edges and solid lines repre-
sent boundary edges.

Although the advancing front idea is simple, the al-
gorithmic details of the method are complex. The main
difficulty with this method lies in the need of merging dif-
ferent loops in the advancing front. Frequently the edges of
a new triangle created in the iteration are “glued” with an-
other edge of the front, changing the topology of the front.
What we mean by topological change is the increase or de-
crease of the number of boundary curves. There are four
types of topological changes that can happen:

1. One curve is created:

2. Two curves are joined into one curve:

3. One curve is splited into two curves:

4. One curve is closed:

These topological events are the object of study of the
handlebody theory.

3 2D-Handlebody Theory

The Handlebody Theory [6] is a mathematical tool which
will help us to understand better the topological changes in
the mesh construction of a surface. It also provides neces-
sary and sufficient conditions to deal with these topological
changes. In the first instance we will introduce some nec-
essary theory.

Let Di be a disc with i = 0, 1, 2 dimension and ∂Di

its boundary.

Definition 1 Hλ = (Aλ, Bλ) is a handle with index λ =
0, 1, 2 such that Bλ ⊆ ∂Aλ where Aλ = Dλ ×D2−λ and
Bλ = (∂Dλ)×D2−λ.

According to definition above there exists only three
types of handles:

Type-0, λ = 0:

A0 = D0 ×D2 =

B0 = (∂D0)×D2 = ∅

Type-1, λ = 1:

A1 = D1 ×D1 =

B1 = (∂D1)×D1 =

Type-2, λ = 2;

A2 = D2 ×D0 =

B2 = (∂D2)×D0 =

To attach a handle to a boundary of a 2-manifold S
means to identify by homomorphism the set Bλ ⊆ ∂Aλ
with a subset I contained in the boundary.

Theorem 1 For every manifold S there is a finite sequence
of surfaces Si=1...N such that S0 = ∅, SN = S and the
manifold Si is obtained by attaching a handle to the bound-
ary of Si−1. This sequence is called the handlebody de-
composition of S.

For each handle type there is a different topological
change in the surface:

• The type-0 handle creates a new connected compo-
nent homeomorphic with a disc and a new boundary
curve is created.

• If type-1 handle is attached to a suface, two cases may
occur:



– It can be attached to two dijoint intervals in the
same boundary curve. The curve is splited into
two.

– It can be attached to intervals of different bound-
ary curves in the surface. T he curves are joined
into one.

• The type-2 case occurs when a boundary curve is closed.

To apply this theory in the construction of a surface
we need a discrete representation of the surface and op-
erators to deal with topological changes discussed above.
This computational framework will be introduced in the
next section.

4 Mesh Representation and Handle Operators

A mesh is defined as M = (V,E, F,B) where E, V , F , B
are the sets of vertices, edges, faces and boundary curves
respectivelly. To retrieve topological information we can
represent each edge with the well known half edge data
structure [10].

One aspect which deserves attention is the difference
between point and vertex. Their role is to represent the
mesh geometrically and topologically, respectivelly. This
detail is important because all boundary curves should be
1D-monifolds. In Figure 2 we show an example that the
distinction between geometry and topology can solve am-
biguities: one curve which is geometrically non-manifold
but topologically may represent either one curve, or two
curves.

Figure 2: (top) - Geometric representation of one curve;
(bottom)- Two topological representation of the same
curve.

Observe that one point can be assigned to more than
one vertex and for query purposes each point must keep a
reference to one vertex that points to it (see Figure 3).
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Figure 3: point/ vertex relationship.

In order to build the mesh iteratively for advancing
front methods we can now use the handlebody theory and
our mesh representation to introduce the handle operators
and their API. Our purpose is to create a computational
method to “mimic” the surface construction process de-
scribed in theorem 1.

Let eij represent an edge, pi, pj its end points and σi,
σj its end vertices.

Definition 2 Two edges eij and ekl are geometrically (resp.
topologically) coincident if they have the same geometry
(resp. topology), i.e., {pi, pj} = {pk, pl} (resp. {σi, σj} =
{σk, σl}.

)

Definition 3 Two edges eij and ekl are topologically semi-
coincident if #({σi, σj} ∩ {σk, σl}) = 1.

Definition 4 Two edges eij and ekl are topologically non-
coincident if #({σi, σj} ∩ {σk, σl}) = 0.

Note that if two edges are topologically coincident
then they are geometrically coincident. The converse is not
true.

We can define four types of mesh handlebody opera-
tors:

1. The handle operator of type-0 creates a new triangle.
It always generates a new connected component;

2. The handle operator of type-1 identify two geometri-
cally coincident edges in the boundary but topologi-
cally non-coincident. The edges may be in the same
boundary curve or in different boundary curves. In the
first case the curve is splited into two curves. In the
second one the curves are joined into one curve.

3. The handle operator of type-2 identify two geometri-
cally and topologically coincent edges. This operator
closes one curve.



4. The homeomorphisms identify two geometrically and
semi-coincident edges. It performs a “zip”, i.e., the
size of one boundary curve is decreased by two edges.
Theres is no topolgy change in the curve.

Now we will define the create and glue topological
operators. They will implement all handle operators de-
scribed above and they can be used to construct a simplicial
mesh in an advancing front algorithm.

The first routine, create(p0, p1, p2), receives three points
as input and it creates a triangle face, three edges, three ver-
tices and one boundary curve. This API is equivalent to the
handle operator of type-0.

The second routine, glue(eij , ekl), receives two geo-
metrically coincident edges and it treats internally the last
three handle operators described above. It updates the mesh
data structure by merging vertex and edge appropriately. It
also maintains the list of boundary curves.

5 Ball-Pivoting: A Case Study

The Ball-Pivoting algorithm (BPA) builds a mesh by creat-
ing triangles which are circunscribed to an empty sphere 1

of constant radius r. These triangles are a subset of the
alpha-shapes of the sample points [8].

As we said in the introduction, the BPA is an advanc-
ing front algorithm for surface reconstruction. For algo-
rithms of this class it is necessary a criteria to choose a
new element to be assigned to the mesh. In the case of
the BPA, the criteria is a gometric step implemented in
the ball pivoting routine. This routine takes a boundary
edge eij (pivot) and the sphere S of radius r which has eij
as a cord. The ball is turned around eij until it touches
a point pk. This point will be a candidate to compose a
new triangle with pi and pj (see Figure 4). To start the
mesh construction there is another geometric routine, the
find seed triangle, which returns three points circunscribed
by an sphere.

(b)

point to be touched

p2
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S turns around p2p3 p1

p3 p4
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p3
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B
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Figure 4: Ball Pivoting intuition. In the begining the front
is composed by the polygonal p1p2p3 (a). After pivoting
the new polygonal of the front is p1p2p3p4 (b).

In this algorithm boundary edges have two classifica-
tions. They are classified as active or inactive. An active

1i.e. there is no sample points inside the sphere

edge is one that can be used for pivoting. If it is not possi-
ble to pivot the edge is classified as inactive.

To avoid a non-manifold reconstruction, i.e., self in-
tersections in the mesh, the BPA performs some verifica-
tions to the candidate point pk after the pivoting. There are
two manifold possibilities: the point is not yet in the mesh
or the point is boundary. For these verifications we need
the queries not used() and on boundary().

The above routines are essentially of geometric nature
or queries. All the remaining routines used in the BPA are
part of the handlebody API as defined in the last section.
They create triangles and assign then to the mesh using the
handle operators.

The BPA algorithm is shown below:

Algorithm Ball-Pivoting

while (not done)
while (eij ← get active edge(B) 6= NULL)
pk ← ball pivot(eij)
if (pk 6= ∅) and (not used(pk) or on boundary(pk))
then

create(pi, pj , pk)
glue(eij , eji)
if eki ∈ B then

glue(eik, eki)
end if
if ejk ∈ B then

glue(ekj , ejk)
end if

else
mark-as-inactive(eij)

end if
end while
if (pi, pj , pk)=find seed triangle() then

create(pi, pj , pk)
end if

end while

Observe no algoritmo acima que, exceto quando uma
nova componente conexa eh criada pela rotina find seed triangle
apos a operacao create, a operacao glue, cujo proposito
eh ligar arestas geometricamente coincidentes, eh chamada
obrigatoriamente uma vez2 e duas vezes condicionadas a
existencia do par geometricamente coincidente nas curvas
de bordo.

O caso interessante eh quando acontecem todas as tres
chamadas. Nesse caso uma curva de bordo triangular esta
sendo fechada i.e. espera-se que algum operador handle do
tipo-2 eh tratado internamente em alguma das tres chamadas,
mais especificamente na terceira. De fato eh possivel mostrar
que o operador handle do tipo-2 acontece se e somente se

2De fato, a aresta pivoteada ja eh geometricamente coincidente.



tres operacoes glue sao chamadas num mesmo passo de um
algoritmo de frente. Veja na figura 5. um interpretacao pic-
torica deste fato.

handle op. 1

glue

glue

handle op. 2

create
glue homeomorphism

Figure 5: fgafga

6 Discussion

We implemented the BPA using the handle operators as de-
scribed in this paper. We now show the results of triangu-
lating two point clouds datasets: the Caltech head model
and the hand.

The model in Figure 6 is a range scan of a clay head
obtained from Caltech consisting of 38000 samples. We
show the point cloud dataset and the triangulation gener-
ated by the Ball-Pivoting algorithm. The holes are parts of
the surface occluded from the scanner.

Figure 7 depicts a dataset of hand bones, containing
65000 sample points and the resulting triangulated surface.

In conclusion, we presented a topological framework
based on handlebody theory for the implementation of ad-
vancing front triangulation algorithms. Our analysis also
provided a comprehensive interpretation of the Ball Pivot-
ing algorithm, more specifically, regarding its topological
aspects. This framework can be easily applied to the other
advancing front algorithms. The basic difference lies on the
geometric criteria step used to add triangles to the mesh.
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Figure 6: Head with 38000 points: (a) samples; (b) surface;
(d) detail of right eye.
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Figure 7: Hand with 65000 points: (a) samples; (b) surface;
(d) detail of middle finger.


