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Abstract. In this article we propose a new 2D triangulation method based on the ball-pivoting algorithm (BPA).
The BPA is an interesting advancing front approach for surface reconstruction that uses a ball of fixed radius
traversing the 3D sample points by pivoting front edges and attaching triangles to the mesh. Given a set of 2D
points, our method applies the BPA on them assuming that they have a constant third coordinate. We show that
such geometrical restriction implies in several simplifications on the original BPA implementation. We demonstrate
that the resulted triangulation is a solid alpha complex, a special subset of Delaunay Triangulations that is closely
related to alpha shapes. The BPA efficency is extremely dependent on the uniformity of the sampling and on the
ball radius. We also present an efficient generalization of our method to obtain, in an adaptive way, 2D solid alpha
complexes of generic samplings (uniform or non-uniform) free from the influence of ball size.

1 Introduction

During the last two decades the problem of triangulating
a set of points in R

n, specially for n = 2, has been thor-
oughlly investigated in many domains, including imaging
computer vision, terrain modeling and meshing for solv-
ing PDE. Despite of many solutions for this problem can
be found, Delaunay triangulations (DT) along with its dual,
the Voronoi Diagram, has received a great attention by the
research community. Its success on uncountable applica-
tions comes from some nice features it contains, namely the
maximization of the smallest angle (only in the 2D case)
and the in-circle property (no point in the point set falls
in the circumcircle of any triangle in the triangulation). In
the literature, one can find many DT algorithms, some of
which are surveyed and evaluated by Fortune [12] and Su
and Drysdale [13].

As a subset of DT we outstand the alpha complexes
and the alpha shapes [6, 7] families. Both are important
tools for shape recognition of a set of points. Each alpha
complex is a well defined simplicial complex parameteri-
zaded by a real number α which describes its level of “de-
tail”. An alpha shape is the underlying polyhedron of an
alpha complex.

In 3D Photography context [8], we encounter an algo-
rithm for surface reconstruction that is closely associated
with the alpha shape: the ball-pivoting algorithm (BPA)[1].
It is an interesting advancing front approach [4, 5] for sur-
face interpolation that uses a ball of fixed radius traversing
the sample points by pivoting front edges of a current active
boundary and creating elements (triangles) that are attached
to the mesh.

1.1 Contributions

The first contribution of this paper is the introduction of the
solid alpha-complexes concept. Our final aim is to present
a new triangulation algorithm of 2D data points based on
the ball-pivoting. Given a set of 2D points, our method ap-
plies the BPA on them assuming that they have a third con-
stant coordinate. Because of such geometric constraint, we
named it Restricted Ball-Pivonting Algorithm (RBPA). Our
implemetation has a number of features and contributions:

• It is a direct method for the construction of 2D solid
alpha complex, which is a subset of an alpha-complex
(see section 2.4), without computing DT.

• It simplifies the BPA data structure and geometric com-
putations taking advantage of the fact that all points are
at a common plane.

• It exihibits linear time complexity for uniform distributed
points. No data sorting is required.

• It is generalized to obtain, in an adaptive way, 2D solid
alpha complexes of generic samplings (uniform or non-
uniform) free from the influence of ball size.

1.2 Overview

The outline of this paper is as follows. In the next section
we review basic concepts on simplicial complexes, Delau-
nay triangulations, alpha complexes and alpha shapes fam-
ilies and introduce the solid alpha complex concept. In sec-
tion 3 we firstly decribe the BPA including its geometric
step, mesh construction and data structure. After that we
introduce our method: the RBPA. We show in section 4



the relation between 2D solid alpha complexes and the out-
put of RBPA. In section 5 we analyse RBPA behavior on
uniform samplings regarding its efficiency for different ball
sizes. In section 6 we present a hierachical generalization of
the RBPA for generic samplings and analyse its complex-
ity. In section 7 we show some examples and applications.
Finally section 8 concludes this article proposing future ex-
tensions and improvements.

2 Basic Concepts

One objective of this section is to describe several concepts
in topology and in computational geometry that will be used
in this work. Other important objective is to introduce the
concept of solid alpha complex.

2.1 Simplicial Complexes

A k-simplex σT = conv(T ) is the convex combination of
an affinelly independent point set T ⊂ R

n, #T = k + 1;
0 ≤ k ≤ n; and # denotes the cardinality. k is the dimen-
sion of the simplex σT . A simplicial complex K is a finite
collection of simplices with the following two properties:

1. if σT ∈ K then σU ∈ K, U ⊂ T .

2. if σU , σV ∈ K, then σT∩V = σU ∩ σV .

Both properties above imply that σT∩V ∈ K. The un-
derlying polyhedron of K is |K| = ∪σ∈Kσ. A subcomplex
L of K is a simplicial complex L ⊂ K.

An α-ball b is an open ball with radius α. We say
that the α-ball b is empty if b ∩ S = ∅. A k-simplex σT ,
0 ≤ k ≤ n− 1 is α-exposed if there exists an empty α-ball
b such that T = ∂b ∩ S.

Based on this simplicial structure we will define some
simplicial artefacts such as Delaunay Triangulations, alpha
complexes and alpha shapes.

2.2 Delaunay Triangulations

The Delaunay triangulation of a set of points on the plane is
a unique set of triangles connecting the points satisfying an
“empty circle” property: the circumcircle of each triangle
does not contain any other points. It is in some sense the
most natural way to triangulate a set of points. We give
below a general definition based on simplicial complexes.

Definition 1 Given a set S ⊂ R
n in general position, the

Delaunay Triangulation of S is the simplicial complex DT(S)
consisting only of

1. all k-simplices,σT (0 ≤ k ≤ n) , with T ⊂ S such
that the circumsphere (the smallest sphere such that
all points lie on its boundary) of T does not contain
any other points of S, and

2. all k-simplices which are faces of other simplices in
DT(S).

2.3 Alpha Complexes and Alpha Shapes

Alpha complexes are simplicial complexes that describe the
levels of detail of a point set. By varying a positive real pa-
rameter α we obtain different shapes ranging from fine to
crude. The most fine shape is the set of points, which is
obtained when α = 0. As α increases, the shape grows
by adding simplices and develops cavities that may join to
form tunnels and voids. The most crude shape is the De-
launay triangulation wich is obtained for large values of α.
More precisely, we have for alpha complexes the following
definition:

Definition 2 Let S ⊂ R
n be a set of points in general po-

sition. For T ⊂ S with #T ≤ n, let bT and µT denote the
smallest ball that contains the points of T and its radius,
respectively. Given 0 ≤ α ≤ ∞, the α-complex Cα(S) of
S is the following simplicial subcomplex of DT(S) where
a simplex σT ∈ DT(S) is in Cα(S) if

1. µT < α and bT ∩ S = ∅, or

2. σT is a face of another simplex in Cα(S).

Looking at Delaunay triangulation and alpha complex
definitions it is immediate the following properties:

P1. If α1 ≤ α2 then Cα1
⊂ Cα2

,

P2. Cα ⊂ DT(S) and

P3. C∞ = DT(S).

The alpha shapes Sα is defined as the underlying poly-
hedron of an alpha complex Cα(S), i. e., Sα = |Cα(S)|. As
well in the alpha complexes for large values of parameter α
we obtain the Delaunay triangulation likewise in the alpha
shapes we obtain preciselly the convex hull. Indeed, an al-
pha shape is a suitable generalization of the convex hull
concept that is used in several applications [6].

In this paper we are interested in the alpha complexes
family because they are more appropriate to describe the
combinatorial structure of an advanving front triangulation
as well as its levels of detail. However, the alpha complex
definition allows undesired simplices (dangling simplices)
of lower dimensions. Thus, it cant be considered a triangu-
lation of a set of points. To accomodate this definition to
triangulations, in the next subsection, we introduce a spe-
cial version of the alpha complex: the solid alpha-complex.

2.4 Alpha Solid and Solid Alpha Complex

In general, the alpha-complexes and alpha shapes are mixed-
dimension complexes and polytopes, respectively. Bernar-
dini et al.[3] defined the solid alpha-shapes (or alpha-solid)



as the alpha-shape without dangling and isolated k-simplices,
0 ≤ k ≤ n − 1. In a similar way we define the solid alpha
complex as the alpha complex without dangling and isolated
k-simplices, 0 ≤ k ≤ n − 1. It is a kind of a “regularized”
subcomplex version of the alpha complex Cα(S). In figure
1 we show a visual difference between alpha-complex and
solid alpha complex, in the 2D case. The notation for the
solid alpha-complex of S ⊂ R

n, given 0 ≤ α ≤ ∞, is
Ĉα(S).

Notice that the properties P1, P2 and P3 are still valid
for the solid aplha complexes. This observation will be very
important in section 6.

(a)

(c)

(b)

(d)

Figure 1: the alpha complex (a) and its solid alpha complex
(b). The alpha shape (c) and its alpha solid (d).

3 The RBPA method

First, we will review the BPA, its main principles and data
structure involved. In the sequence, we introduce our method,
the RBPA, describing its natural inheritance from BPA and
simplifications.

3.1 BPA review

The Ball-Pivoting Algorithm is an advancing front [4, 5] al-
gorithm for surface reconstruction, one of the most power-
ful among the incremental surface reconstruction methods.
BPA is based on growing a surface by moving its bound-
ary curves until the geometry and topology of the whole
object is captured. For algorithms of this class it is neces-
sary a criteria to choose a new element to be assigned to the
mesh [2]. In the case of BPA, the criteria is a ball of fixed
radius traversing the sample points by pivoting front edges
of a current active boundary. Next, we summarize the ge-
ometric step, data struture involved and the mesh construc-
tion (algorithm outline). For more details [1, 2].

Geometric step. The input of the algorithm are three di-
mensional set points P = {p1, p2, ..., pn}, their normals
and a fixed positive real parameter α. The geometric step

of BPA takes a boundary edge eij = {pi, pj} (pivot) and
the sphere S of fixed radius α which has eij as a chord.
The ball is turned around eij until it touches a point pk.
This point will be the only candidate to compose a new tri-
angle with pi and pj (see Figure 2). For this cadidate edge a
test for normal consistence is performed and non-manifold
cases are verified. To start the mesh construction there is
another geometric routine, that find the seed triangle, i.e,
three points such that the simplex they compose is not in
the current mesh and it is α-exposed.

(b)

point to be touched

pi

pk

S turns around pipj
p0

pj pk

p0

pj

S
B

pi

(a)

Figure 2: Ball Pivoting intuition. In the begining the front
is composed by the polygonal p1p2p3 (a). After pivoting
the new polygonal of the front is p1p2p3p4 (b).

From the above description of the algorithm we have
the following remark:

Observation 1 The point pk returned by the geometric step
is such that σT , T = {pk, pi, pj}, is α-exposed.

Data structure. In general, BPA implementations have a
graph G which represents point conectivity and two more
fundamental data structures (e.g. half edge [11]). The first
one is the front F , a collection of connected boundary curves
that stores the contour of the current mesh front. The sec-
ond fundamental data structure is a uniform 3D grid that
takes advantage of the local property of the geometric step
to speed up the algorithm. We define the size of the voxel in
this grid as 2α. The reason for that is: a canditate to be the
first touched point is the one whose distance from it to the
center of the pivoting chord is less than 2α. Notice that the
grid takes linear time to be constructed. We will call the 27
neighbors voxels of a point p in the grid as Vp and denote
#Vp as the number of points in Vp.

Algorithm outline. Initially the graph G contains only the
first seed triangle and the front F corresponds to its three
edges. The algorithm goes updating G by performing ball
pivoting steps (candidate points are searched in Vp) once in
each edge of the current front F until there is no more seed
triangles. In each pivoting step this collection is updated by
performing glue operations that join or separate boundary
curves (for more details [2]).

3.2 Our method

Though BPA algorithm be usefull for 3D models, in general
for range scans, we want to investigate what happen when



we apply it in a set points restricted to a plane. More pre-
cisely, take an isometric embbeding application i : R

2 ↪→
R

3, say i(x, y) = (x, y, 0) and apply BPA. This is what we
call RBPA, a particular case of the BPA. We are now to dis-
cuss some particular features of RBPA which simplifies its
implimentation, when compared to BPA:

• it use a 2D uniform grid: the neighbors of a point are
on the 9 pixels around it instead of the 27 voxels of the
3D grid;

• there is neither normals consistence test (normals in-
formation is not necessary) nor non-manifold cases
verification for candidate triangles;

• it is not necessary to treat the glue case when two
boundary curves in the same connected component are
joined into one (i. e., a genus could not be created in a
planar surface); and

• the geometric step is simplified observing that to com-
pute the smallest pivoting angle of the ball on some
edge eij is equivalent to compute the biggest angle
composed by the candidate point with eij (see fig. 3).

eij

largest angle

Figure 3: Geometric sipmlification of the candidate point
selection.

In its essence RBPA does not differ from BPA (note
that observation 1 is also valid for RBPA). However, we are
interested in its output and how it can contribute to 2D tri-
angulation problems and sampling analysis in a qualitative
and practical way. In the next section we show the RBPA
relation with 2D solid alpha-complex.

4 2D Solid Alpha-Complexes and RBPA

Now, we go to an important point of this paper by asking
the following question:

How does the triangulation of RBPA look like,
given 0 ≤ α ≤ ∞?

The answer is: it looks like exactly to the 2D solid alpha-
complex of the points. Indeed, let Tα be the set of triangular
faces built by RBPA. From observation 1 we have that each

σT ∈ Tα is α-exposed by a 3D-ball. Therefore, in the re-
stricted plane its circunscribed circle bT with radius µT is
empty with µT ≤ α. So, by definition 2, we have that Tα ⊂
Ĉα(S). To prove the converse we must suppose that the seed
triangle selection is ideal in a sense that it returns a simplex
iff there exists a set of three points T = {p1, p2, p3} such
that σT is α-exposed and there is no segment of this triangle
in the mesh. Let σT ∈ Ĉα(S). Since the seed selection is
ideal, one segment of T , say p1p2 belongs to the mesh. At
some moment runnning the RBPA, the segment p1p2 was
in the front and one of the two cases could occur: (i) a piv-
oting was perfomed on p1p2 or (ii) it was glued to another
boundary edge. Clearly, in the second case we have got to
the conclusion. Since µT ≤ α, in the first case p3 is Vm,
where m is the mid point of p1p2, and geometrically it is
the unique cadidate point to be retuned by the ball pivoting
step. As a conclusion, in both cases we have σT ∈ Ĉα(S).
More precisely, we have the following theorem:

Theorem 1 Let S ⊂ R
2 be a set of points in general po-

sition and Ĉα(S) its solid alpha-complex. Consider Tα as
the triangulation output of the RBPA running on the image
of the embbeding i with the “ideal” seed triangle selection.
Then Ĉα(S) = Tα.

Note: Though in our implementation we do not have an
“ideal” seed selection, to speed up the algorithm we adopted
an heuristic that takes linear time independent on the num-
ber of calls. The approach looks at each pixel grid once
and search for candidate triangles in a constant time. As
we have a linear non empty number of pixels the total seed
selection cost is linear.

Theorem 1 give us an important insight: it generates
the 2D solid alpha complex without the computation of De-
launay triangulation. In the next section we will show that
this computation is very efficient if, considering a suitable
radius, we apply RBPA on uniform samplings. Indeed it
has linear behaviour.

5 RBPA and uniform samplings

It is well-known that scan images generated by the points
capture of object surfaces in 3D fotography are very dense
and are huge. This implies that surface reconstruction meth-
ods [10] should be efficient in order to deal with such type
of data. The BPA uses a uniform 3D grid to accelerate the
search. This strategy is very suitable because, in each ball
pivoting step, only the points on the neighboorhood Vp of
the rotation certer p are candidates to build a new triangle
in the mesh. Moreover, if the object is uniformly sampled
and the value of α is the less possible in such a way that
the entire surface is reconstructed, then #Vp is very small
and practically constant at any point of the surface. That is
the reason why the BPA is very fast: the querying time at



each pivoting step is constant and small. In other words, we
can affirm that an optimal performance of the algorithm is
achieved when such conditions of sampling characterize an
“ideal” instance and the parameter α is sufficiently small.
The same situation holds for RBPA.

We observe two disadvantages of the BPA, also present
in the RBPA. When α is big, then #Vp is also big. Thus,
at each pivoting step the algorithm spend more time search-
ing for candidates in Vp. As a consequence, the algorithm
slowdown at a point that is inneficient for large quantity of
points. The other disadvantage occurs when the sampling
is non-uniform. Beyond the same side effect cited above
on uniform samplings, the values of #Vp are unbalanced at
several regions. This fact also makes the algorithm ineffi-
cient.

In order to solve those problems, we are to propose
a new methodology that accelerates the RBPA, iteratively
running it with different radius in increasing scales of sam-
plings (in our case we use the diadic scale) until we get
to a desired radius. This new method will be denoted by
HRBPA (Hierarchical RBPA). It calls RBPA several times
in an adaptive way using the most suitable radius for the
different sampling scales of the set of points. Moreover, it
takes the advantage of the property that the complex gener-
ated at a iteration is enclosed on the complex of the previ-
ous iteration (property P1 in section 2.3). This allows us to
eliminate points that are already on the interior of the mesh.
Next section presents this method in detail.

6 HRBPA: Hierarchical RBPA

As we presented in the last section, HRBPA is in some
sence a “multiscale” version of RBPA. This method speeds
up the RBPA itself to compute solid alpha complexes given
any positive real α and a generic sampling.

The methodology of HRBPA exploits the efficience of
RBPA with a suitable radius on uniform samplings com-
bined with the solid alpha complex property that if α1 ≤ α2

then Ĉα1
⊂ Ĉα2

. More preciselly, it applies iteratively
RBPA in an adaptative way with a diadic resolution, i.e,
from a “minimal” radius estimation α0 in each iteraction
step, say i, we run RBPA with ball radius 2iα0. The total
number of steps is log (α/α0) + 1. Next we explain how to
estimate the minimal radius and how the iterative triagula-
tion goes from one level step to the next one. Consider as
input of HRBPA the real positive parameter α and the set
of points S.

Minimal Radius Estmation. We tackled it by looking for
small clusters of k-points in a quadtree constructed on the
set of points such that each leaf has at most k points, where
k is an integer controlled by the user. Then, we set α0 as a
half of the smallest leaf resolution (see fig 4.).

Iterative Triangulation After the minimal radius α0 be es-

2α0

(b)(a)

Figure 4: Computing the minimal radius resolution.

timated we evaluate α < 2α0 (*). If (*) is true we apply
RBPA with radius α and stop triangulation. Since Ĉα0

⊂

Ĉ2α0
, in the case of (*) be false, we apply again RBPA with

radius 2α0 only on the points lying in the set S − int(Ĉα0
)

by advancing the boundary of Ĉα0
, which composes the

front F . Therefore, to go from a lower to the higher res-
olution, we need only transfer boundary and isolated points
(see fig. 5) and continue advancing the front F . Analo-
gously, we apply the same process to the others levels.

discarted points

the front
continues advancing

transferred points

Figure 5: Iterative triangulation step.

Summarizing HRBPA, for 0 ≤ α ≤ ∞ we have the
following steps:

1. Compute minimal radius α0, set αi = α0 and i = 0;

2. Transfer boundary and isolated points as input;

3. If α < αi then apply RBPA with radius α and stop,
else apply it with radius αi;

4. Set i = i + 1, αi = 2αi−1 and go back to step 2.

Complexity. The HRBPA complexity for α = α0, with-
out considering the complexity of the quadtree construc-
tion, corresponds to the “ideal” RBPA case on regular sam-
plings and it has linear behaviour because in each pivoting



step we have that #Vp is constant. Most part of the linear
constant depends on data structure implementation 1 and on
the parameter k as the maximum number of points in each
leaf. In figure 6 we show a graphic to illustrate RBPA lin-
earity on uniform samplings.
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Figure 6: Timing graphic.

For generic samplings we do not have a global com-
plexity bound on the number of points but we can analyse
and evaluate it in parts.

The preprocessing cost to build the quadtree depends
on the depth d of the quadtree which can be shown that
d = log (s/c) + 3/2 where s is the side length of the initial
square and c is the diameter of the smallest cluster with k
points (adaptaded from [14] cap 14 pg. 293). Therefore
building the quadtree takes O((d + 1)n) time, where n is
the number of points.

There is also the triangulation cost in each iteraction
step considering only the boundary and isolated points of
the previous triangulation step to continue advancing the
front. Since at each level we apply RBPA with the appro-
priate radius (i. e. we fall in the ideal case of RBPA) thus
we have a linear bound time. In conclusion, if there are ki

boundary and isolated points in the level step i, RBPA takes
O(ki) time cost to transfer these points, build the grid data
structure and perform triangulation. Therefore the total cost
of HRBPA is O((d+1)n+

∑
ki) , where kj ≤ ki for i < j.

7 Examples

In figures 7, 8 and 9 we summarize applications with exam-
ples.

Figure 7 shows in the first picture a uniform sampling
of the alpha symbol and its quadtree structure detecting a
minimal resolution of the points. Applying HBPA in the

1We used a generic data structure [9] which comprises geometry and
topology in a unified framework for representations of meshes with or
without boundaries. It is a very flexible framework that makes easier future
advanced studies on topology and sampling analyses we plan as a future
work.

ideal case (α = α0), we obtain a nice result by recover-
ing the actual shape of the samples. As we depicted in (a)
and (b) the recognized shape can be represented through the
solid alpha complex or through its alpha solid, respectively.

Figure 8 shows an example which is very applicable
to computational biology analysis and related domains. In
picture (a) we have a preprocessed image of a molecule and
its quadtree structure detecting minimal resolution. Run-
ning HRBA with the minimal radius it did not capture the
whole topology (i.e. atoms) of the molecule (see picture
(b)). However, by increasing slightly the radius we obtain
the correct one (see picture (c)).

In figure 9 we show an example that illustrate how
HBPA improves RBPA performance. In the first picture we
have a non uniform sampling containing 700 points and its
two resolution levels (α0 and 2α0) captured by the quadtree
structure. Applying RBPA with radius size in the largest
level (α = 2α0) we obtain, as a result, the alpha complex
depicted in (c) at time running of 50ms. Applying HRBPA,
which first compute the alpha complex depicted in (b), we
obtain for the same radius the time running of 25ms (more
preciselly 15ms in the first level and 8ms in the second one).

8 Conclusion

Based on BPA principles, in this paper we introduced the
concept of solid alpha complexes. We present a new method
for the construction of this kind of object, the RBPA. We
showed that RBPA is an algorithm whose efficiency is de-
pendent on the uniformity of the sample points and on the
ball size. To solve this problem we proposed the hierarchi-
cal RBPA (HRBPA), which generalizes the RBPA method.
It obtains, in an adaptive way, 2D solid alpha complexes of
generic samplings (uniform or non-uniform) free from the
influence of ball size.

Future Work

At small term we are chasing two main results:

• Generalize RBPA for 3D points to compute tetrahe-
dralizations,

• Take advantage of the quadtree as query structure in-
stead of a uniform grid. This avoids HRBPA creating
uniform grid at each level.

We are also to investigate applications to geometric and
topological sampling analysis.
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(a) (b) (c)

Figure 7: (a) sampling of the alpha symbol, its (b) solid alpha complex and its (c) alpha solid.

(a) (b) (c)

Figure 8: Preprocessed image of a molecule (a), its solid alpha complex for α = α0 (b) and its topology recovered with a
slight increase in the ball size (c).

(a) (b) (c)

Figure 9: Multiscale sampling with two levels (a) and its two reconstructed levels of detail, (b) and (c).


