Fixed points of Legendre-Fenchel type transforms and polarity type operators

Daniel Reem
(based on joint works with Alfredo Iusem and Simeon Reich)
Department of Mathematics, The Technion, Haifa, Israel
E-mail: dream@technion.ac.il
http://w3.impa.br/~dream

Perspectives in Modern Analysis, International Conference in honor of Dov Aharonov, Samuel Krushkal, Simeon Reich, and Lawrence Zalcman,
Holon Institute of Technology, Holon, Israel, 29 May 2018
(30 minutes)
History of mathematics

2011-2013: I was a postdoc at IMPA (Brazil)

End-of-Jan-begin-of-Feb 2013: came to a vacation in Israel and gave talks in several seminars. The talk was about a result, based on a joint work with Iusem and Svaiter, regarding a certain characterization of order preserving and order reversing operators acting on the class of lower semicontinuous proper and convex functions in Banach spaces (more details: later).

Soon after returning to Brazil I received an email from Michael Cwikel in which he wondered whether the result I spoke on can be used "to say things of interest in the context of Hilbert spaces."
2011-2013: I was a postdoc at IMPA (Brazil)
2011-2013: I was a postdoc at IMPA (Brazil)

End-of-Jan-begin-of-Feb 2013: came to a vacation in Israel and gave talks in several seminars
- **2011-2013**: I was a postdoc at IMPA (Brazil)

- **End-of-Jan-begin-of-Feb 2013**: came to a vacation in Israel and gave talks in several seminars

- **The talk was about a result**, based on a joint work with Iusem and Svaiter, regarding a certain characterization of order preserving and order reversing operators acting on the class of lower semicontinuous proper and convex functions in Banach spaces (more details: later).
2011-2013: I was a postdoc at IMPA (Brazil)

End-of-Jan-begin-of-Feb 2013: came to a vacation in Israel and gave talks in several seminars

The talk was about a result, based on a joint work with Iusem and Svaiter, regarding a certain characterization of order preserving and order reversing operators acting on the class of lower semicontinuous proper and convex functions in Banach spaces (more details: later).

Soon after returning to Brazil I received an email from Michael Cwikel in which he wondered whether the result I spoke on can be used “to say things of interest in the context of Hilbert spaces”.
I thanked Michael and, among other things, said that indeed Hilbert spaces have advantages, e.g., because the strong correspondence between them and their duals implies that the order reversing operators act from the same set to itself.

Some time later I suggested to Alfredo Iusem to investigate the fixed points of order reversing operators acting on the above-mentioned class of functions in Hilbert spaces.

He liked the idea and over the next few months we have managed to make a pretty good progress.
I thanked Michael and, among other things, said that indeed Hilbert spaces have advantages, e.g., because the strong correspondence between them and their duals implies that the order reversing operators act from the same set to itself.
I thanked Michael and, among other things, said that indeed Hilbert spaces have advantages, e.g., because the strong correspondence between them and their duals implies that the order reversing operators act from the same set to itself.

Some time later I suggested to Alfredo Iusem to investigate the fixed points of order reversing operators acting on the above-mentioned class of functions in Hilbert spaces.
I thanked Michael and, among other things, said that indeed Hilbert spaces have advantages, e.g., because the strong correspondence between them and their duals implies that the order reversing operators act from the same set to itself.

Some time later I suggested to Alfredo Iusem to investigate the fixed points of order reversing operators acting on the above-mentioned class of functions in Hilbert spaces.

He liked the idea and over the next few months we have managed to make a pretty good progress.
Unfortunately, in September 2013 each of us had more urgent tasks, and the fixed point project was left aside; Time passed and nothing happened; Meanwhile I left IMPA and became a postdoc at the University of S˜ ao Paulo, Brazil. Then, in September 2015, we agreed to invite Simeon Reich to participate in the project. Why Simeon? e.g., because: Simeon is a big expert in nonlinear and convex analysis and, in particular, a big fan of fixed points; he has a talent to make sure that projects do find a successful end, and within a reasonable amount of time.
Unfortunately, in September 2013 each of us had more urgent tasks, and the fixed point project was left aside;
Unfortunately, in September 2013 each of us had more urgent tasks, and the fixed point project was left aside;

Time passed and nothing happened; Meanwhile I left IMPA and became a postdoc at the University of São Paulo, Brazil
Unfortunately, in September 2013 each of us had more urgent tasks, and the fixed point project was left aside;

Time passed and nothing happened; Meanwhile I left IMPA and became a postdoc at the University of São Paulo, Brazil

Then, in September 2015, we agreed to invite Simeon Reich to participate in the project,
Unfortunately, in September 2013 each of us had more urgent tasks, and the fixed point project was left aside;

Time passed and nothing happened; Meanwhile I left IMPA and became a postdoc at the University of São Paulo, Brazil

Then, in September 2015, we agreed to invite Simeon Reich to participate in the project,

Why Simeon? e.g., because:
Unfortunately, in September 2013 each of us had more urgent tasks, and the fixed point project was left aside;

Time passed and nothing happened; Meanwhile I left IMPA and became a postdoc at the University of São Paulo, Brazil

Then, in September 2015, we agreed to invite Simeon Reich to participate in the project,

Why Simeon? e.g., because:

- Simeon is a big expert in nonlinear and convex analysis and, in particular, a big fan of fixed points;
Unfortunately, in September 2013 each of us had more urgent tasks, and the fixed point project was left aside;

Time passed and nothing happened; Meanwhile I left IMPA and became a postdoc at the University of São Paulo, Brazil

Then, in September 2015, we agreed to invite Simeon Reich to participate in the project,

Why Simeon? e.g., because:

- Simeon is a big expert in nonlinear and convex analysis and, in particular, a big fan of fixed points;
- he has a talent to make sure that projects do find a successful end, and within a reasonable amount of time.
Historical background (Cont.)

Additional time passed without returning to the project. Eventually, in November 2016, when I was already a researcher at the Technion and worked with Simeon (on other projects), the fixed point project was re-started.

July 2017: the paper was posted on the arXiv.

The second project (convex geometry, with Simeon): originated from the first project during 2017, and was posted on the arXiv in August 2017.
Additional time passed without returning to the project,
Additional time passed without returning to the project,

Eventually, in November 2016, when I was already a researcher at the Technion and worked with Simeon (on other projects), the fixed point project was re-started.
Additional time passed without returning to the project,

Eventually, in November 2016, when I was already a researcher at the Technion and worked with Simeon (on other projects), the fixed point project was re-started.

July 2017: the paper was posted on the arXiv.
Additional time passed without returning to the project,

Eventually, in November 2016, when I was already a researcher at the Technion and worked with Simeon (on other projects), the fixed point project was re-started.

July 2017: the paper was posted on the arXiv.

Additional time passed without returning to the project,

Eventually, in November 2016, when I was already a researcher at the Technion and worked with Simeon (on other projects), the fixed point project was re-started.

July 2017: the paper was posted on the arXiv.

The second project (convex geometry, with Simeon): originated from the first project during 2017, and was posted on the arXiv in August 2017.
Some notations and assumptions

From now on, \((X, \langle \cdot, \cdot \rangle)\) is a real Hilbert space, \(X \neq \{0\}\).

Notation: \(C(X)\) is the set of lower semicontinuous proper convex functions \(f: X \rightarrow \mathbb{R} \cup \{+\infty\}\).

Given \(f: X \rightarrow [-\infty, \infty]\), its Legendre-Fenchel transform (namely, the convex conjugate) is the function \(f^*: X \rightarrow [-\infty, \infty]\) defined by \(f^*(x^*) := \sup\{\langle x^*, x \rangle - f(x) : x \in X\}\), \(x^* \in X\).
Some notations and assumptions

- From now on, \((X, \langle \cdot, \cdot \rangle)\) is a real Hilbert space, \(X \neq \{0\}\)
Some notations and assumptions

- From now on, \((X, \langle \cdot, \cdot \rangle)\) is a real Hilbert space, \(X \neq \{0\}\)

- **Notation:** \(\mathcal{C}(X)\) is the set of lower semicontinuous proper convex functions \(f : X \to \mathbb{R} \cup \{+\infty\}\).
Some notations and assumptions

- From now on, $(X, \langle \cdot, \cdot \rangle)$ is a real Hilbert space, $X \neq \{0\}$

- **Notation:** $\mathcal{C}(X)$ is the set of lower semicontinuous proper convex functions $f : X \to \mathbb{R} \cup \{+\infty\}$.

- Given $f : X \to [-\infty, \infty]$, its Legendre-Fenchel transform (namely, the convex conjugate) is the function $f^* : X \to [-\infty, \infty]$ defined by
Some notations and assumptions

- From now on, \((X, \langle \cdot, \cdot \rangle)\) is a real Hilbert space, \(X \neq \{0\}\)

- **Notation:** \(\mathcal{C}(X)\) is the set of lower semicontinuous proper convex functions \(f : X \to \mathbb{R} \cup \{+\infty\}\).

- Given \(f : X \to [\infty, \infty]\), its Legendre-Fenchel transform (namely, the convex conjugate) is the function \(f^* : X \to [\infty, \infty]\) defined by

\[
f^*(x^*) := \sup\{\langle x^*, x \rangle - f(x) : x \in X\}, \quad x^* \in X.
\]
First project (Convex Analysis): goal

To solve the following fixed point equation:

\[f(x) = \tau f^*(E x + c) + \langle w, x \rangle + \beta, \quad x \in X, \]

Here:

- \(f : X \to [-\infty, \infty] \) is the unknown function,
- \(\tau > 0 \) is given,
- \(c, w \in X \) are given,
- \(\beta \in \mathbb{R} \) is given

\(E : X \to X \) is a given continuous linear and invertible operator.
First project (Convex Analysis): goal

To solve the following fixed point equation:

\[f(x) = \tau f^*(Ex + c) + \langle w, x \rangle + \beta, \quad x \in X, \quad (1) \]

Here:
- \(f: X \to [-\infty, \infty] \) is the unknown function,
- \(\tau > 0 \) is given,
- \(c, w \in X \) are given,
- \(\beta \in \mathbb{R} \) is given
- \(E: X \to X \) is a given continuous linear and invertible operator.
First project (Convex Analysis): goal

To solve the following fixed point equation:

\[f(x) = \tau f^*(Ex + c) + \langle w, x \rangle + \beta, \quad x \in X, \] (1)
First project (Convex Analysis): goal

To solve the following fixed point equation:

\[f(x) = \tau f^*(Ex + c) + \langle w, x \rangle + \beta, \quad x \in X, \]

(1)

Here:

- \(f : X \to [-\infty, \infty] \) is the unknown function,
- \(\tau > 0 \) is given,
- \(c, w \in X \) are given,
- \(\beta \in \mathbb{R} \) is given,
- \(E : X \to X \) is a given continuous linear and invertible operator.
To solve the following fixed point equation:

\[f(x) = \tau f^*(Ex + c) + \langle w, x \rangle + \beta, \quad x \in X, \] (1)

Here:

- \(f : X \to [-\infty, \infty] \) is the unknown function,
To solve the following fixed point equation:

\[f(x) = \tau f^*(Ex + c) + \langle w, x \rangle + \beta, \quad x \in X, \]

(1)

Here:

- \(f : X \rightarrow [-\infty, \infty] \) is the unknown function,
- \(\tau > 0 \) is given,
First project (Convex Analysis): goal

To solve the following fixed point equation:

\[f(x) = \tau f^*(Ex + c) + \langle w, x \rangle + \beta, \quad x \in X, \]

(1)

Here:

- \(f : X \to [-\infty, \infty] \) is the unknown function,
- \(\tau > 0 \) is given,
- \(c, w \in X \) are given,
To solve the following fixed point equation:

\[f(x) = \tau f^*(Ex + c) + \langle w, x \rangle + \beta, \quad x \in X, \]

(1)

Here:

- \(f : X \to [-\infty, \infty] \) is the unknown function,
- \(\tau > 0 \) is given,
- \(c, w \in X \) are given,
- \(\beta \in \mathbb{R} \) is given
First project (Convex Analysis): goal

To solve the following fixed point equation:

\[f(x) = \tau f^*(Ex + c) + \langle w, x \rangle + \beta, \quad x \in X, \]

(1)

Here:

- \(f : X \to [-\infty, \infty] \) is the unknown function,
- \(\tau > 0 \) is given,
- \(c, w \in X \) are given,
- \(\beta \in \mathbb{R} \) is given
- \(E : X \to X \) is a given continuous linear and invertible operator.
Why considering (1)? First motivation

It is a generalization of the equation $f = f^*$, (2)

The solutions of (2) are the self-conjugate functions. Well-known fact: (2) has a unique solution: the normalized energy function, namely $f(x) = \frac{1}{2} \|x\|_2^2$, $x \in X$.

Iusem, Reem, Reich

Fixed points, Legendre-Fenchel, polarity

29 May 2018 8 / 29
Why considering (1)? First motivation

- It is a generalization of the equation

\[f = f^*, \quad (2) \]
Why considering (1)? First motivation

- It is a generalization of the equation

\[f = f^*, \]

(2)

- The solutions of (2) are the self-conjugate functions
Why considering (1)? First motivation

- It is a generalization of the equation

\[f = f^*, \]

(2)

- The solutions of (2) are the self-conjugate functions

- Well-known fact: (2) has a unique solution: the normalized energy function, namely \(f(x) = \frac{1}{2} \|x\|^2 \), \(x \in X \).
Why considering (1): second motivation

Let T_f denote the right-hand side of (1), namely $\tau f^*(Ex + c) + \langle w, x \rangle + \beta$, $x \in X$.

Theorem: T is the most general fully order reversing operator acting on $C(X)$, where fully order reversing means that T is invertible and both T and T^{-1} reverse the (pointwise) order.

Original version of this theorem: Artstein-Avidan and Milman, 2009, $X = \mathbb{R}^n$, $n \in \mathbb{N}$.

Generalization to arbitrary infinite-dimensional Banach spaces: joint work with Iusem and Svaiter, 2015 (now $T: C(X) \to C_{w^*}(X^*)$), where $C_{w^*}(X^*)$ is the set of all weak-star lower semicontinuous proper and convex functions $g: X^* \to (-\infty, \infty]$ and E is the adjoint of some continuous, invertible and linear operator). The talks that I gave in 2013 were about this result.
Why considering (1): second motivation

Let Tf denote the right-hand side of (1), namely

$$(Tf)(x) := \tau f^*(Ex + c) + \langle w, x \rangle + \beta, \quad x \in X$$
Why considering (1): second motivation

- Let Tf denote the right-hand side of (1), namely

$$(Tf)(x) := \tau f^*(Ex + c) + \langle w, x \rangle + \beta, \quad x \in X$$

Theorem

T is the most general fully order reversing operator acting on $C(X)$, where fully order reversing means that T is invertible and both T and T^{-1} reverse the (pointwise) order.
Why considering (1): second motivation

- Let Tf denote the right-hand side of (1), namely

$$
(Tf)(x) := \tau f^*(Ex + c) + \langle w, x \rangle + \beta, \quad x \in X
$$

Theorem

T is the most general fully order reversing operator acting on $C(X)$, where fully order reversing means that T is invertible and both T and T^{-1} reverse the (pointwise) order.

- Original version of this theorem: Artstein-Avidan and Milman, 2009, $X = \mathbb{R}^n$, $n \in \mathbb{N}$.
Why considering (1): second motivation

- Let \(Tf \) denote the right-hand side of (1), namely
 \[
 (Tf)(x) := \tau f^*(Ex + c) + \langle w, x \rangle + \beta, \quad x \in X
 \]

Theorem

\(T \) is the most general fully order reversing operator acting on \(\mathcal{C}(X) \), where fully order reversing means that \(T \) is invertible and both \(T \) and \(T^{-1} \) reverse the (pointwise) order.

- Original version of this theorem: Artstein-Avidan and Milman, 2009, \(X = \mathbb{R}^n, n \in \mathbb{N} \).
- Generalization to arbitrary infinite-dimensional Banach spaces: joint work with Iusem and Svaiter, 2015 (now \(T : \mathcal{C}(X) \to \mathcal{C}_{w^*}(X^*) \), where \(\mathcal{C}_{w^*}(X^*) \) is the set of all weak-star lower semicontinuous proper and convex functions \(g : X^* \to (-\infty, \infty] \) and \(E \) is the adjoint of some continuous, invertible and linear operator). The talks that I gave in 2013 were about this result.
The classification theorem: an informal version

The nonlinear equation

(1) is very sensitive to the various
parameters which appear in it
and can have no solution, a unique
solution, or several (possibly infinitely many) ones.

If E is positive definite,
then there always exists a solution to (1),
and this solution is quadratic and
strictly convex; sometimes uniqueness can also be established.

If E is not positive definite,
then there can be several (possibly infinitely many) solutions or no solution
at all, depending on the values of the other parameters;
sometimes there are solutions which are not quadratic.
The nonlinear equation (1) is very sensitive to the various parameters which appear in it and can have no solution, a unique solution, or several (possibly infinitely many) ones.
The nonlinear equation (1) is very sensitive to the various parameters which appear in it and can have no solution, a unique solution, or several (possibly infinitely many) ones.

- If E is positive definite, then
The classification theorem: an informal version

Theorem

- The nonlinear equation (1) is very sensitive to the various parameters which appear in it and can have no solution, a unique solution, or several (possibly infinitely many) ones.

- If E is positive definite, then there always exists a solution to (1), and this solution is quadratic and strictly convex;

- If E is not positive definite, then there can be several (possibly infinitely many) solutions or no solution at all, depending on the values of the other parameters; sometimes there are solutions which are not quadratic.
The classification theorem: an informal version

Theorem

- The nonlinear equation \((1)\) is very sensitive to the various parameters which appear in it and can have no solution, a unique solution, or several (possibly infinitely many) ones.

- If \(E\) is positive definite, then
 - there always exists a solution to \((1)\), and this solution is quadratic and strictly convex;
 - sometimes uniqueness can also be established.
The classification theorem: an informal version

Theorem

The nonlinear equation (1) is very sensitive to the various parameters which appear in it and can have no solution, a unique solution, or several (possibly infinitely many) ones.

If E is positive definite, then

- there always exists a solution to (1), and this solution is quadratic and strictly convex;
- sometimes uniqueness can also be established.

If E is not positive definite, then
The classification theorem: an informal version

Theorem

- **The nonlinear equation (1) is very sensitive to the various parameters which appear in it** and can have no solution, a unique solution, or several (possibly infinitely many) ones.

- **If \(E \) is positive definite, then**
 - there always exists a solution to (1), and this solution is quadratic and strictly convex;
 - sometimes uniqueness can also be established.

- **If \(E \) is not positive definite, then**
 - there can be several (possibly infinitely many) solutions or no solution at all, depending on the values of the other parameters;
Theorem

The nonlinear equation (1) is very sensitive to the various parameters which appear in it and can have no solution, a unique solution, or several (possibly infinitely many) ones.

- If E is positive definite, then
 - there always exists a solution to (1), and this solution is quadratic and strictly convex;
 - sometimes uniqueness can also be established.

- If E is not positive definite, then
 - there can be several (possibly infinitely many) solutions or no solution at all, depending on the values of the other parameters;
 - sometimes there are solutions which are not quadratic.
The classification theorem, formal version, I

Suppose that E is positive definite, namely it is continuous, $E^* = E$ and $\langle Ex, x \rangle > 0$ when $x \neq 0$. Then there exists a quadratic solution f to (1), namely

$$f(x) = \frac{1}{2} \langle Ax, x \rangle + \langle b, x \rangle + \gamma,$$

where $0 \neq A : X \to X$ is linear, self-adjoint and continuous, $b \in X$, $\gamma \in \mathbb{R}$. Actually, the coefficients satisfy the following relations:

$$A = \sqrt{\tau} E,$$

$$b = w + \sqrt{\tau} c_1 + \sqrt{\tau},$$

$$\gamma = \beta (1 + \sqrt{\tau})^2 + 0.5 \sqrt{\tau} \langle c - w, E^{-1}(c - w) \rangle (1 + \sqrt{\tau})^2 (\tau + 1).$$

This solution is strictly convex and it is unique in the class of quadratic solutions having a leading coefficient A which is invertible.
The classification theorem, formal version, I

Theorem

Suppose that \(E \) is positive definite, namely it is continuous, \(E^* = E \) and \(\langle Ex, x \rangle > 0 \) when \(x \neq 0 \). Then there exists a quadratic solution \(f \) to (1), namely

\[
\begin{align*}
 f(x) &= \frac{1}{2} \langle Ax, x \rangle + \langle b, x \rangle + \gamma, \\
 x &\in X,
\end{align*}
\]

where \(0 \neq A : X \to X \) is linear, self-adjoint and continuous, \(b \in X, \gamma \in \mathbb{R} \).

Actually, the coefficients satisfy the following relations:

\[
\begin{align*}
 A &= \sqrt{\tau} E, \\
 b &= w + \sqrt{\tau} c_1 + \sqrt{\tau}, \\
 \gamma &= \beta (1 + \sqrt{\tau})^2 + 0.5 \sqrt{\tau} \langle c - w, E^{-1} (c - w) \rangle (1 + \sqrt{\tau})^2 (\tau + 1).
\end{align*}
\]

This solution is strictly convex and it is unique in the class of quadratic solutions having a leading coefficient \(A \) which is invertible.
The classification theorem, formal version, I

Theorem

Suppose that E is positive definite, namely it is continuous, $E^* = E$ and $\langle Ex, x \rangle > 0$ when $x \neq 0$. **Then there exists a quadratic solution f to (1), namely**

$$f(x) = \frac{1}{2} \langle Ax, x \rangle + \langle b, x \rangle + \gamma, \quad x \in X,$$

where $0 \neq A : X \to X$ is linear, self-adjoint and continuous, $b \in X$, $\gamma \in \mathbb{R}$.

Actually, the coefficients satisfy the following relations:

$$A = \sqrt{\tau} E,$$

$$b = w + \sqrt{\tau} c_1 + \sqrt{\tau},$$

$$\gamma = \beta (1 + \sqrt{\tau})^2 + \frac{\sqrt{\tau}}{2} \langle c - w, E^{-1} (c - w) \rangle (1 + \sqrt{\tau})^2 (\tau + 1).$$

This solution is strictly convex and it is unique in the class of quadratic solutions having a leading coefficient A which is invertible.
Suppose that E is positive definite, namely it is continuous, $E^* = E$ and $\langle Ex, x \rangle > 0$ when $x \neq 0$. Then there exists a quadratic solution f to (1), namely

$$f(x) = \frac{1}{2} \langle Ax, x \rangle + \langle b, x \rangle + \gamma, \quad x \in X,$$

where $0 \neq A : X \to X$ is linear, self-adjoint and continuous, $b \in X$, $\gamma \in \mathbb{R}$.

This solution is strictly convex and it is unique in the class of quadratic solutions having a leading coefficient A which is invertible.
The classification theorem, formal version, I

Theorem

Suppose that E is positive definite, namely it is continuous, $E^* = E$ and $\langle Ex, x \rangle > 0$ when $x \neq 0$. Then there exists a quadratic solution f to (1), namely

$$f(x) = \frac{1}{2} \langle Ax, x \rangle + \langle b, x \rangle + \gamma, \quad x \in X,$$

where $0 \neq A : X \to X$ is linear, self-adjoint and continuous, $b \in X$, $\gamma \in \mathbb{R}$. Actually, the coefficients satisfy the following relations:
The classification theorem, formal version, I

Theorem

Suppose that E is positive definite, namely it is continuous, $E^* = E$ and $\langle Ex, x \rangle > 0$ when $x \neq 0$. **Then there exists a quadratic solution f to (1), namely**

$$f(x) = \frac{1}{2} \langle Ax, x \rangle + \langle b, x \rangle + \gamma, \quad x \in X,$$

where $0 \neq A : X \rightarrow X$ is linear, self-adjoint and continuous, $b \in X$, $\gamma \in \mathbb{R}$. **Actually, the coefficients satisfy the following relations:**

$$A = \sqrt{\tau} E,$$
The classification theorem, formal version, I

Theorem

Suppose that E is positive definite, namely it is continuous, $E^* = E$ and $\langle Ex, x \rangle > 0$ when $x \neq 0$. **Then there exists a quadratic solution** f to (1), namely

$$f(x) = \frac{1}{2} \langle Ax, x \rangle + \langle b, x \rangle + \gamma, \quad x \in X,$$

where $0 \neq A : X \to X$ is linear, self-adjoint and continuous, $b \in X$, $\gamma \in \mathbb{R}$.

Actually, the coefficients satisfy the following relations:

$$
\begin{align*}
A &= \sqrt{\tau} E, \\
b &= \frac{w + \sqrt{\tau} c}{1 + \sqrt{\tau}},
\end{align*}
$$
The classification theorem, formal version, I

Theorem

Suppose that E is positive definite, namely it is continuous, $E^* = E$ and $\langle Ex, x \rangle > 0$ when $x \neq 0$. Then there exists a quadratic solution f to (1), namely

$$f(x) = \frac{1}{2} \langle Ax, x \rangle + \langle b, x \rangle + \gamma, \quad x \in X,$$

where $0 \neq A : X \to X$ is linear, self-adjoint and continuous, $b \in X$, $\gamma \in \mathbb{R}$. Actually, the coefficients satisfy the following relations:

$$A = \sqrt{\tau} E,$$

$$b = \frac{w + \sqrt{\tau} c}{1 + \sqrt{\tau}},$$

$$\gamma = \frac{\beta (1 + \sqrt{\tau})^2 + 0.5 \sqrt{\tau} \langle c - w, E^{-1}(c - w) \rangle}{(1 + \sqrt{\tau})^2 (\tau + 1)}.$$
The classification theorem, formal version, I

Theorem

Suppose that E is positive definite, namely it is continuous, $E^* = E$ and $\langle Ex, x \rangle > 0$ when $x \neq 0$. **Then there exists a quadratic solution f to (1), namely**

$$f(x) = \frac{1}{2} \langle Ax, x \rangle + \langle b, x \rangle + \gamma, \quad x \in X,$$

where $0 \neq A : X \to X$ is linear, self-adjoint and continuous, $b \in X$, $\gamma \in \mathbb{R}$. Actually, the coefficients satisfy the following relations:

$$A = \sqrt{\tau} E,$$

$$b = \frac{w + \sqrt{\tau} c}{1 + \sqrt{\tau}},$$

$$\gamma = \frac{\beta (1 + \sqrt{\tau})^2 + 0.5 \sqrt{\tau} \langle c - w, E^{-1}(c - w) \rangle}{(1 + \sqrt{\tau})^2 (\tau + 1)}.$$

This solution is strictly convex and it is unique in the class of quadratic solutions having a leading coefficient A which is invertible.
The classification theorem, II: uniqueness

Suppose that E is positive definite and at least one of the following conditions holds:

1. $\tau = 1$ and $c = w$,
2. X is finite dimensional,
3. $\tau \neq 1$, and f belongs to the class of functions from X to \mathbb{R} which are twice differentiable and their second derivative is continuous at the point $x_0 = (1/(1-\tau))(E^{-1}w - E^{-1}c)$.

Then there exists a unique solution f to (1) in the corresponding classes of functions (first case: all functions from X to $[-\infty, \infty]$; second case: the class of twice differentiable functions having a second derivative which is continuous at x_0).

This solution is quadratic and strictly convex and its coefficients satisfy (3).
Theorem

Suppose that E is positive definite and at least one of the following conditions holds:

1. $\tau = 1$ and $c = w$,
2. X is finite dimensional,
3. $\tau \neq 1$,
4. f belongs to the class of functions from X to R which are twice differentiable and their second derivative is continuous at the point $x_0 = (1/(1-\tau))(E^{-1}w - E^{-1}c)$.

Then there exists a unique solution f to (1) in the corresponding classes of functions (first case: all functions from X to $[\sim\infty, \infty]$; second case: the class of twice differentiable functions having a second derivative which is continuous at x_0).

This solution is quadratic and strictly convex and its coefficients satisfy (3).
The classification theorem, II: uniqueness

Theorem

Suppose that E is positive definite and at least one of the following conditions holds:

- $\tau = 1$ and $c = w$,

Then there exists a unique solution f to (1) in the corresponding classes of functions (first case: all functions from X to $[-\infty, \infty]$; second case: the class of twice differentiable functions having a second derivative which is continuous at $x_0 = (1/(1 - \tau))(E - 1w - E - 1c)$).

This solution is quadratic and strictly convex and its coefficients satisfy (3).
The classification theorem, II: uniqueness

Theorem

Suppose that E is positive definite and at least one of the following conditions holds:

- $\tau = 1$ and $c = w$,
- X is finite dimensional, $\tau \neq 1$, and f belongs to the class of functions from X to \mathbb{R} which are twice differentiable and their second derivative is continuous at the point $x_0 := (1/(1 - \tau))(E^{-1}w - E^{-1}c)$.
The classification theorem, II: uniqueness

Theorem

Suppose that E is positive definite and at least one of the following conditions holds:

- $\tau = 1$ and $c = w$,
- X is finite dimensional, $\tau \neq 1$, and f belongs to the class of functions from X to \mathbb{R} which are twice differentiable and their second derivative is continuous at the point $x_0 := (1/(1 - \tau))(E^{-1}w - E^{-1}c)$.

Then there exists a unique solution f to (1) in the corresponding classes of functions (first case: all functions from X to $[-\infty, \infty]$; second case: the class of twice differentiable functions having a second derivative which is continuous at x_0).
The classification theorem, II: uniqueness

Theorem

Suppose that E is positive definite and at least one of the following conditions holds:

- $\tau = 1$ and $c = w$,
- X is finite dimensional, $\tau \neq 1$, and f belongs to the class of functions from X to \mathbb{R} which are twice differentiable and their second derivative is continuous at the point $x_0 := (1/(1 - \tau))(E^{-1}w - E^{-1}c)$.

Then there exists a unique solution f to (1) in the corresponding classes of functions (first case: all functions from X to $[-\infty, \infty]$; second case: the class of twice differentiable functions having a second derivative which is continuous at x_0).

This solution is quadratic and strictly convex and its coefficients satisfy (3).
The classification theorem, III \((E \text{ is not positive definite: non-uniqueness 1}) \)

Theorem

The equation

\[f(x_1, x_2) = f^*(x_2, -x_1), \quad (x_1, x_2) \in \mathbb{R}^2. \]

has infinitely many quadratic solutions of the form

\[f(x) = \frac{1}{2} \langle Ax, x \rangle, \quad x \in \mathbb{R}^2, \]

where \(A : \mathbb{R}^2 \to \mathbb{R}^2 \) is any linear operator the matrix representation of which is symmetric, positive definite, and has determinant 1.
The equation

\[f(x_1, x_2) = f^*(x_2, -x_1), \quad (x_1, x_2) \in \mathbb{R}^2. \]

has infinitely many quadratic solutions of the form

\[f(x) = \frac{1}{2} \langle Ax, x \rangle, \quad x \in \mathbb{R}^2, \]
The equation

\[f(x_1, x_2) = f^*(x_2, -x_1), \quad (x_1, x_2) \in \mathbb{R}^2. \]

has infinitely many quadratic solutions of the form

\[f(x) = \frac{1}{2} \langle Ax, x \rangle, \quad x \in \mathbb{R}^2, \]

where \(A : \mathbb{R}^2 \to \mathbb{R}^2 \) is any linear operator the matrix representation of which is symmetric, positive definite, and has determinant 1.
The classification theorem, IV (E is not positive definite: non-uniqueness 2)

The equation $f(x) = f^*(−x)$, $x ∈ \mathbb{R}$, has infinitely many non-quadratic solutions, among them $f(x) := \begin{cases} \lambda^2 x^2, & x ∈ (-∞, 0] \\ \frac{1}{2} \lambda x^2, & x ∈ [0, ∞) \end{cases}$ for arbitrary $\lambda > 0$, and $f(x) := \begin{cases} \infty, & x ∈ (-∞, 0] \\ -\frac{1}{2} - \log(x), & x ∈ (0, ∞) \end{cases}$.
The classification theorem, IV \((E \text{ is not positive definite: non-uniqueness 2})\)

Theorem

The equation

\[f(x) = f^*(-x), \quad x \in \mathbb{R}, \]

has infinitely many non-quadratic solutions, among them
The classification theorem, IV (\(E\) is not positive definite: non-uniqueness 2)

Theorem

The equation

\[f(x) = f^*(-x), \quad x \in \mathbb{R}, \]

has infinitely many non-quadratic solutions, among them

\[
 f(x) := \begin{cases}
 \frac{\lambda}{2} x^2, & x \in (-\infty, 0], \\
 \frac{1}{2\lambda} x^2, & x \in [0, \infty),
\end{cases}
\]

for arbitrary \(\lambda > 0\),
The classification theorem, IV (E is not positive definite: non-uniqueness 2)

Theorem

The equation

$$f(x) = f^*(-x), \quad x \in \mathbb{R},$$

has infinitely many non-quadratic solutions, among them

$$f(x) := \begin{cases}
\frac{\lambda}{2}x^2, & x \in (-\infty, 0], \\
\frac{1}{2\lambda}x^2, & x \in [0, \infty),
\end{cases}$$

for arbitrary $\lambda > 0$, and

$$f(x) := \begin{cases}
\infty, & x \in (-\infty, 0], \\
-\frac{1}{2} - \log(x), & x \in (0, \infty).
\end{cases}$$
The classification theorem, V (non-existence)

If $w \neq 0$, then the equation

$$f(x) = f^*(\frac{-x}{\|w\|^2}) + \langle w, x \rangle \quad \forall x \in X,$$

does not have any solution $f : X \to [-\infty, \infty]$.

In addition, if $c \neq 0$, then no $f : X \to [-\infty, \infty]$ satisfies the equation

$$f(x) = f^*(\frac{-x+c}{\|w\|^2}), \quad x \in X.$$
The classification theorem, V (non-existence)

Theorem

If \(w \neq 0 \), then the equation

\[
f(x) = f^*(-x) + \langle w, x \rangle \quad \forall x \in X,
\]

does not have any solution \(f : X \rightarrow [-\infty, \infty] \).
The classification theorem, V (non-existence)

Theorem

- If $w \neq 0$, then the equation
 \[f(x) = f^*(-x) + \langle w, x \rangle \quad \forall x \in X, \]
 does not have any solution $f : X \to [-\infty, \infty]$.

- In addition, if $c \neq 0$, then no $f : X \to [-\infty, \infty]$ satisfies the equation
 \[f(x) = f^*(-x + c), \quad x \in X. \]
A by-product of independent interest

Lemma

Assume that $Q : X \to 2^X$ is a monotone operator, i.e.,

$$\langle y_2 - y_1, x_2 - x_1 \rangle \geq 0, \forall x_1, x_2 \in X, y_1 \in Qx_1, y_2 \in Qx_2.$$ (4)

Suppose that $L : X \to X$ is invertible, strictly monotone (i.e., strict inequality in (4) when $x_1 \neq x_2$) and maximally monotone (i.e., if the graph of L is contained in the graph of some monotone operator M, then $L = M$).

If $I \subseteq QL$ or $I \subseteq LQ$, where I is the identity operator, then $Q = L^{-1}$. In particular, Q is single-valued, invertible, strictly monotone and maximally monotone.
A by-product of independent interest

Lemma

Assume that $Q : X \to 2^X$ is a monotone operator, i.e.,

$$\langle y_2 - y_1, x_2 - x_1 \rangle \geq 0, \quad \forall x_1, x_2 \in X, y_1 \in Qx_1, y_2 \in Qx_2.$$ \hspace{1cm} (4)
Lemma

Assume that $Q : X \to 2^X$ is a monotone operator, i.e.,

$$\langle y_2 - y_1, x_2 - x_1 \rangle \geq 0, \quad \forall x_1, x_2 \in X, y_1 \in Qx_1, y_2 \in Qx_2. \quad (4)$$

Suppose that $L : X \to X$ is invertible, strictly monotone (i.e., strict inequality in (4) when $x_1 \neq x_2$) and maximally monotone (i.e., if the graph of L is contained in the graph of some monotone operator M, then $L = M$).
Lemma

Assume that $Q : X \to 2^X$ is a monotone operator, i.e.,

$$\langle y_2 - y_1, x_2 - x_1 \rangle \geq 0, \quad \forall x_1, x_2 \in X, y_1 \in Qx_1, y_2 \in Qx_2. \quad (4)$$

Suppose that $L : X \to X$ is invertible, strictly monotone (i.e., strict inequality in (4) when $x_1 \neq x_2$) and maximally monotone (i.e., if the graph of L is contained in the graph of some monotone operator M, then $L = M$). If

$$I \subseteq QLQL \quad \text{or} \quad I \subseteq LQLQ,$$

where I is the identity operator, then $Q = L^{-1}$. In particular, Q is single-valued, invertible, strictly monotone and maximally monotone.
The goal

To solve the following geometric fixed point equation:

\[C = (G \cap C) \circ (X \setminus \{0\}). \quad (5) \]

Here, \(\emptyset \neq C \) is the unknown subset, \(C \) is contained in a real Hilbert space \(X \neq \{0\} \), \(G : X \rightarrow X \) is a given continuous invertible linear operator, \(G \cap C \) is the set of all \(Gc \) for \(c \in C \), and the polar (or dual) of \(\emptyset \neq S \subseteq X \) is the set \(S^\circ := \{ x^* \in X : \langle x^*, s \rangle \leq 1, \forall s \in S \} \). Polar sets are, of course, widely used in geometry and optimization (e.g., the normal cone is the polar of the tangent cone).
The goal

To solve the following geometric fixed point equation:

\[C = (G C) \circ . \] (5)

Here:

- \(\emptyset \neq C \) is the unknown subset,
- \(C \) is contained in a real Hilbert space \(X \neq \{0\} \),
- \(G : X \to X \) is a given continuous invertible linear operator,
- \(GC := \{Gc : c \in C\} \),
- The polar (or dual) of \(\emptyset \neq S \subseteq X \) is the set \(S \circ := \{x^* \in X : \langle x^*, s \rangle \leq 1 \forall s \in S\} \).

Polar sets are, of course, widely used in geometry and optimization (e.g., the normal cone is the polar of the tangent cone).
The goal

To solve the following geometric fixed point equation:

\[C = (GC)\circ. \]

(5)
The goal

To solve the following geometric fixed point equation:

\[C = (GC)^{\circ}. \] \hspace{1cm} (5)

Here:

∅̸= C is the unknown subset, C is contained in a real Hilbert space \(X \neq \{0\} \), \(G: X \rightarrow X \) is a given continuous invertible linear operator, \(GC := \{Gc: c \in C\} \), the polar (or dual) of \(∅̸= S \subseteq X \) is the set \(S^{\circ} := \{x^\ast \in X: \langle x^\ast, s \rangle \leq 1 \ \forall s \in S\} \). Polar sets are, of course, widely used in geometry and optimization (e.g., the normal cone is the polar of the tangent cone).
The goal

To solve the following geometric fixed point equation:

\[C = (GC)^\circ. \] \hspace{1cm} (5)

Here:

- \(\emptyset \neq C \) is the unknown subset,
The goal

To solve the following geometric fixed point equation:

\[C = (GC)^\circ. \] \hfill (5)

Here:

- \(\emptyset \neq C \) is the unknown subset,
- \(C \) is contained in a real Hilbert space \(X \neq \{0\} \),
The goal

To solve the following geometric fixed point equation:

\[C = (GC)^\circ. \] \hspace{1cm} (5)

Here:

- \(\emptyset \neq C \) is the unknown subset,
- \(C \) is contained in a real Hilbert space \(X \neq \{0\} \),
- \(G : X \to X \) is a given continuous invertible linear operator,
The goal

To solve the following geometric fixed point equation:

\[C = (GC)^\circ. \] \hspace{1cm} (5)

Here:

- \(\emptyset \neq C \) is the unknown subset,
- \(C \) is contained in a real Hilbert space \(X \neq \{0\} \),
- \(G : X \to X \) is a given continuous invertible linear operator,
- \(GC := \{Gc : c \in C\} \),
- The polar (or dual) of \(\emptyset \neq S \subseteq X \) is the set \(S^\circ := \{x^* \in X : \langle x^*, s \rangle \leq 1 \ \forall s \in S\} \).

Polar sets are, of course, widely used in geometry and optimization (e.g., the normal cone is the polar of the tangent cone).
The goal

To solve the following geometric fixed point equation:

\[C = (GC)^\circ. \] (5)

Here:

- \(\emptyset \neq C \) is the unknown subset,
- \(C \) is contained in a real Hilbert space \(X \neq \{0\} \),
- \(G : X \to X \) is a given continuous invertible linear operator,
- \(GC := \{ Gc : c \in C \} \),
- **The polar (or dual)** of \(\emptyset \neq S \subseteq X \) is the set
 \[S^\circ := \{ x^* \in X : \langle x^*, s \rangle \leq 1 \ \forall s \in S \}. \]
The goal

To solve the following geometric fixed point equation:

\[C = (GC)^\circ. \] (5)

Here:

- \(\emptyset \neq C \) is the unknown subset,
- \(C \) is contained in a real Hilbert space \(X \neq \{0\} \),
- \(G : X \rightarrow X \) is a given continuous invertible linear operator,
- \(GC := \{Gc : c \in C\} \),
- **The polar (or dual)** of \(\emptyset \neq S \subseteq X \) is the set
 \[S^\circ := \{x^* \in X : \langle x^*, s \rangle \leq 1 \ \forall s \in S\}. \]
- Polar sets are, of course, **widely used in geometry and optimization** (e.g., the normal cone is the polar of the tangent cone).
Why considering (5)? First motivation

It is a generalization of the equation $C = C \circ$, (6)
The solutions of (6) are the self-polar sets.

Well-known fact: (6) has a unique solution: the unit ball.

Corollary of the well-known fact: If we start with \mathbb{R}^n and want to define on it a norm such that the unit ball induced by this norm will coincide with the unit ball of the dual norm, then we can do this if and only if the norm is Euclidean.

Here we identify the dual space with \mathbb{R}^n and consider both balls as subsets of \mathbb{R}^n.

Iusem, Reem, Reich

Fixed points, Legendre-Fenchel, polarity
Why considering (5)? First motivation

- It is a **generalization** of the equation

\[C = C^o, \quad (6) \]
Why considering (5)? First motivation

- It is a **generalization** of the equation
 \[C = C^\circ, \]
 (6)

- The solutions of (6) are the **self-polar sets**
Why considering (5)? First motivation

- It is a **generalization** of the equation

\[C = C^\circ, \]

(6)

- The solutions of (6) are the **self-polar sets**

- **Well-known fact:** (6) has a unique solution: **the unit ball**.
Why considering (5)? First motivation

- It is a **generalization** of the equation

\[C = C^\circ, \quad (6) \]

- The solutions of (6) are the **self-polar sets**

- **Well-known fact:** (6) has a unique solution: the **unit ball**.

- **Corollary of the well-known fact:** If we start with \(\mathbb{R}^n \) and want to define on it a norm such that the unit ball induced by this norm will coincide with the unit ball of the dual norm, then we can do this if and only if the norm is Euclidean.
Why considering (5)? First motivation

- It is a **generalization** of the equation

\[C = C^o \tag{6} \]

- The solutions of (6) are the **self-polar sets**

- **Well-known fact**: (6) has a unique solution: the **unit ball**.

- **Corollary of the well-known fact**: If we start with \(\mathbb{R}^n \) and want to define on it a norm such that the unit ball induced by this norm will coincide with the unit ball of the dual norm, then we can do this if and only if the norm is Euclidean.

- Here we identify the dual space with \(\mathbb{R}^n \) and consider both balls as subsets of \(\mathbb{R}^n \).
Why considering (5)? Second motivation

Related to a relatively recent branch of research in convex geometry. In some of the works belonging to this branch, certain order reversing operators acting on various classes of finite-dimensional geometric objects were considered. For instance, Böröczky-Schneider 2008: objects are compact and convex subsets of \mathbb{R}^n containing the origin in their interior, Schneider 2008: objects are closed and convex cones, Artstein-Avidan and Milman 2008, Milman-Segal-Slomka 2011, Slomka 2011: objects are closed and convex subsets of \mathbb{R}^n containing the origin, Artstein-Avidan and Slomka 2012: objects are n-dimensional centrally symmetric ellipsoids. In all of these works $n \in \mathbb{N}$ satisfies either $n \geq 2$ or $n \geq 3$.

Iusem, Reem, Reich
Fixed points, Legendre-Fenchel, polarity
29 May 2018
Why considering (5)? Second motivation

- Related to a relatively recent branch of research in convex geometry.
Why considering (5)? Second motivation

- Related to a relatively recent branch of research in convex geometry.

- In some of the works belonging to this branch, certain order reversing operators acting on various classes of finite-dimensional geometric objects were considered. For instance,
Why considering (5)? Second motivation

- Related to a relatively recent branch of research in convex geometry.

- In some of the works belonging to this branch, certain order reversing operators acting on various classes of finite-dimensional geometric objects were considered. For instance,

 - **Böröczky-Schneider 2008**: objects are compact and convex subsets of \(\mathbb{R}^n \) containing the origin in their interior,
Why considering (5)? Second motivation

- Related to a relatively recent branch of research in convex geometry.

- In some of the works belonging to this branch, certain order reversing operators acting on various classes of finite-dimensional geometric objects were considered. For instance,
 - Böröczky-Schneider 2008: objects are compact and convex subsets of \mathbb{R}^n containing the origin in their interior,
 - Schneider 2008: objects are closed and convex cones,
Why considering (5)? Second motivation

- Related to a relatively recent branch of research in convex geometry.

- In some of the works belonging to this branch, certain order reversing operators acting on various classes of finite-dimensional geometric objects were considered. For instance,

 - **Böröczky-Schneider 2008**: objects are compact and convex subsets of \mathbb{R}^n containing the origin in their interior,
 - **Schneider 2008**: objects are closed and convex cones,
 - **Artstein-Avidan and Milman 2008, Milman-Segal-Slomka 2011, Slomka 2011**: objects are closed and convex subsets of \mathbb{R}^n containing the origin,
Why considering (5)? Second motivation

- Related to a relatively recent branch of research in convex geometry.

- In some of the works belonging to this branch, certain order reversing operators acting on various classes of finite-dimensional geometric objects were considered. For instance,

 - Böröczky-Schneider 2008: objects are compact and convex subsets of \mathbb{R}^n containing the origin in their interior,

 - Schneider 2008: objects are closed and convex cones,

 - Artstein-Avidan and Milman 2008, Milman-Segal-Slomka 2011, Slomka 2011: objects are closed and convex subsets of \mathbb{R}^n containing the origin,

 - Artstein-Avidan and Slomka 2012: objects are n-dimensional centrally symmetric ellipsoids,
Why considering (5)? Second motivation

- Related to a relatively recent branch of research in convex geometry.

- In some of the works belonging to this branch, certain order reversing operators acting on various classes of finite-dimensional geometric objects were considered. For instance,

 - **Böröczky-Schneider 2008**: objects are compact and convex subsets of \mathbb{R}^n containing the origin in their interior,
 - **Schneider 2008**: objects are closed and convex cones,
 - **Artstein-Avidan and Milman 2008, Milman-Segal-Slomka 2011, Slomka 2011**: objects are closed and convex subsets of \mathbb{R}^n containing the origin,
 - **Artstein-Avidan and Slomka 2012**: objects are n-dimensional centrally symmetric ellipsoids,

- In all of these works $n \in \mathbb{N}$ satisfies either $n \geq 2$ or $n \geq 3$.
A central property that was established there: these operators must have the form $T(C) = AC \circ$ for some invertible linear operator $A: \mathbb{R}^n \to \mathbb{R}^n$.

Equation (5) is directly related to these works because if we denote $T(C) := (GC) \circ$, then a simple verification shows that $T(C) = (G^*)^{-1}C \circ$.

A central property that was established there: these operators must have the form $T(C) = AC^\circ$ for some invertible linear operator $A : \mathbb{R}^n \to \mathbb{R}^n$.
A central property that was established there: these operators must have the form $T(C) = AC^\circ$ for some invertible linear operator $A : \mathbb{R}^n \to \mathbb{R}^n$.

Equation (5) is directly related to these works because if we denote $T(C) := (GC)^\circ$, then a simple verification shows that

$$T(C) = (G^*)^{-1}C^\circ.$$
Why considering (5)? third motivation

This equation, namely $C = (G\ C) \circ$, has some similarities with the fixed point equation discussed earlier: $f(x) := \tau f^\ast(Ex + c) + \langle w, x \rangle + \beta$, $x \in X$.

Some of the results related to the convex analytic equation are used in the analysis of the convex geometry equation.
Why considering (5)? third motivation

- This equation, namely

\[C = (GC)^\circ, \]
Why considering (5)? third motivation

- This equation, namely
 \[C = (GC)^\circ, \]
 has some similarities with the fixed point equation discussed earlier:
 \[f(x) := \tau f^*(Ex + c) + \langle w, x \rangle + \beta, \quad x \in X \]
Why considering (5)? third motivation

This equation, namely

\[C = (GC) \circ, \]

has some similarities with the fixed point equation discussed earlier:

\[f(x) := \tau f^*(Ex + c) + \langle w, x \rangle + \beta, \quad x \in X \]

Some of the results related to the convex analytic equation are used in the analysis of the convex geometry equation.
The classification theorem

Theorem

$X \neq \{0\}$ is a real Hilbert space,

$G : X \to X$ is a continuous and invertible linear operator,

Consider equation (5) with an unknown $\emptyset_0 = C \subseteq X$, i.e.,:

$C = (GC) \circ$,

The following statements hold:

(i) Any solution to (5) must be closed and convex, and must contain 0.

(ii) If G is positive definite, then there exists a unique solution to (5): the ellipsoid of the form $C = \{x \in X : \langle Gx, x \rangle \leq 1\}$.

(iii) If G is not positive definite, then there are cases where (5) has several (possibly infinitely many) solutions.

There are cases where (5) does not have any solution which belongs to the class of bounded subsets of X which contain 0 in their interiors.
The classification theorem

Theorem

1. $X \neq \{0\}$ is a real Hilbert space,

2. Consider equation (5) with an unknown $\emptyset \neq C \subseteq X$, i.e., $C = (GC) \circ$, where G is a continuous and invertible linear operator.

(i) Any solution to (5) must be closed and convex, and must contain 0.

(ii) If G is positive definite, then there exists a unique solution to (5): the ellipsoid of the form $C = \{x \in X : \langle Gx, x \rangle \leq 1\}$.

(iii) If G is not positive definite, then there are cases where (5) has several (possibly infinitely many) solutions.

Note: There are cases where (5) does not have any solution which belongs to the class of bounded subsets of X which contain 0 in their interiors.
The classification theorem

Theorem

- $X \neq \{0\}$ is a real Hilbert space,
- $G : X \to X$ is a continuous and invertible linear operator,

Consider equation (5) with an unknown $\emptyset \neq C \subseteq X$, i.e.,:

$$C = (GC) \circ,$$

The following statements hold:

(i) Any solution to (5) must be closed and convex, and must contain 0.

(ii) If G is positive definite, then there exists a unique solution to (5): the ellipsoid of the form $C = \{x \in X : \langle Gx, x \rangle \leq 1\}$.

(iii) If G is not positive definite, then there are cases where (5) has several (possibly infinitely many) solutions.

There are cases where (5) does not have any solution which belongs to the class of bounded subsets of X which contain 0 in their interiors.
The classification theorem

Theorem

- $X \neq \{0\}$ is a real Hilbert space,
- $G : X \to X$ is a continuous and invertible linear operator,
- Consider equation (5) with an unknown $\emptyset \neq C \subseteq X$, i.e.,:
 \[C = (GC)^\circ, \]
The classification theorem

Theorem

- $X \neq \{0\}$ is a real Hilbert space,
- $G : X \to X$ is a continuous and invertible linear operator,
- Consider equation (5) with an unknown $\emptyset \neq C \subseteq X$, i.e.,:

$$C = (GC)^{\circ},$$

- The following statements hold:
The classification theorem

Theorem

- $X \neq \{0\}$ is a real Hilbert space,
- $G : X \rightarrow X$ is a continuous and invertible linear operator,
- Consider equation (5) with an unknown $\emptyset \neq C \subseteq X$, i.e.,:
 \[C = (GC)^{\circ}, \]

The following statements hold:

(i) Any solution to (5) must be closed and convex, and must contain 0.
The classification theorem

Theorem

- $X \neq \{0\}$ is a real Hilbert space,
- $G : X \to X$ is a continuous and invertible linear operator,
- Consider equation (5) with an unknown $\emptyset \neq C \subseteq X$, i.e.,:
 \[C = (GC)^\circ, \]
- The following statements hold:
 1. Any solution to (5) must be closed and convex, and must contain 0.
 2. If G is positive definite, then there exists a unique solution to (5): the **ellipsoid** of the form $C = \{ x \in X : \langle Gx, x \rangle \leq 1 \}$.

Iusem, Reem, Reich
Fixed points, Legendre-Fenchel, polarity
29 May 2018 23 / 29
The classification theorem

Theorem

- \(X \neq \{0\} \) is a real Hilbert space,
- \(G : X \rightarrow X \) is a continuous and invertible linear operator,
- Consider equation (5) with an unknown \(\emptyset \neq C \subseteq X \), i.e.:
 \[C = (GC)^\circ, \]

 The following statements hold:

 (i) Any solution to (5) must be closed and convex, and must contain 0.
 (ii) If \(G \) is positive definite, then there exists a unique solution to (5): the ellipsoid of the form \(C = \{ x \in X : \langle Gx, x \rangle \leq 1 \} \).
 (iii) If \(G \) is not positive definite, then
The classification theorem

Theorem

- $X \neq \{0\}$ is a real Hilbert space,
- $G : X \to X$ is a continuous and invertible linear operator,
- Consider equation (5) with an unknown $\emptyset \neq C \subseteq X$, i.e.,:
 \[C = (GC)^\circ, \]

The following statements hold:

(i) Any solution to (5) must be closed and convex, and must contain 0.

(ii) If G is positive definite, then there exists a unique solution to (5): the **ellipsoid** of the form $C = \{ x \in X : \langle Gx, x \rangle \leq 1 \}$.

(iii) If G is not positive definite, then
 - there are cases where (5) has several (possibly infinitely many) solutions
The classification theorem

Theorem

- $X \neq \{0\}$ is a real Hilbert space,
- $G : X \to X$ is a continuous and invertible linear operator,
- Consider equation (5) with an unknown $\emptyset \neq C \subseteq X$, i.e.,:
 \[C = (GC)^\circ, \]

The following statements hold:

(i) Any solution to (5) must be closed and convex, and must contain 0.
(ii) If G is positive definite, then there exists a unique solution to (5): the **ellipsoid** of the form $C = \{ x \in X : \langle Gx, x \rangle \leq 1 \}$.
(iii) If G is not positive definite, then
 1. there are cases where (5) has several (possibly infinitely many) solutions
 2. there are cases where (5) does not have any solution which belongs to the class of bounded subsets of X which contain 0 in their interiors.
Some contributions

Our analysis is essentially dimension-free. We obtain a few by-products of possible independent interest:

1. A convex analytic converse to the celebrated Lax-Milgram theorem from Partial Differential Equations.
2. Results related to infinite-dimensional convex geometry.

Iusem, Reem, Reich

29 May 2018
Some contributions

- Our analysis is essentially **dimension-free**

...
Some contributions

- Our analysis is essentially **dimension-free**
- We obtain a few by-products **of possible independent interest**:
Some contributions

- Our analysis is essentially \textit{dimension-free}

- We obtain a few by-products \textbf{of possible independent interest}:
 - A convex analytic converse to the celebrated Lax-Milgram theorem from Partial Differential Equations
Some contributions

- Our analysis is essentially **dimension-free**
- We obtain a few by-products **of possible independent interest**:
 - A convex analytic converse to the celebrated Lax-Milgram theorem from Partial Differential Equations
 - Results related to **infinite-dimensional convex geometry**
Non-uniqueness: an instructive example

Suppose that $X = \mathbb{R}^n$, $G(x) := -x$, $x \in X$.

Then (5) becomes $C = (-C) \circ$ (7).

This equation has infinitely many solutions, among them:

- The unit ball
- Regular simplices having circumradius $r := \sqrt{n}$ and centroid 0
- Unbounded ice-cream cones with vertex at 0
Suppose that $X = \mathbb{R}^n$, then (5) becomes $C = (-C) \circ$ (7). This equation has infinitely many solutions, among them: the unit ball, regular simplices having circumradius $r = \sqrt{n}$ and centroid 0, (unbounded) ice-cream cones with vertex at 0.
Non-uniqueness: an instructive example

Suppose that $X = \mathbb{R}^n$,

$G(x) := -x, \ x \in X,$
Non-uniqueness: an instructive example

Suppose that $X = \mathbb{R}^n$, $G(x) := -x$, $x \in X$, then (5) becomes

$$C = (-C)^\circ.$$ \hfill (7)
Suppose that $X = \mathbb{R}^n$,

$G(x) := -x, \ x \in X,$

Then (5) becomes

$$C = (−C)^\circ.$$ (7)

This equation has infinitely many solutions, among them:
Suppose that $X = \mathbb{R}^n$,

$G(x) := -x, \quad x \in X$,

Then (5) becomes

$$C = (-C)^\circ. \quad (7)$$

This equation has infinitely many solutions, among them:

- The **unit ball**
Non-uniqueness: an instructive example

Suppose that $X = \mathbb{R}^n$,

$G(x) := -x, \ x \in X$,

Then (5) becomes

$$C = (-C)^\circ.$$ (7)

This equation has infinitely many solutions, among them:

- The **unit ball**
- **Regular simplices** having circumradius $r := \sqrt{n}$ and centroid 0
Non-uniqueness: an instructive example

Suppose that $X = \mathbb{R}^n$,

$G(x) := -x, \ x \in X$,

Then (5) becomes

$$C = (-C)^{\circ}.$$ (7)

This equation has infinitely many solutions, among them:

- The unit ball
- regular simplices having circumradius $r := \sqrt{n}$ and centroid 0
- (unbounded) ice-cream cones with vertex at 0
Real world illustrations 1: positive definite case
Real world illustrations 1: positive definite case

Figure: 2D example (source: Bill Frymire)
Real world illustrations 1: positive definite case

Figure: 2D example
(source: [Bill Frymire](http://rugby1823.blogosfere.it))

Figure: 3D example
(source: http://rugby1823.blogosfere.it)
Real world illustrations 2: $G = -I$
Real world illustrations 2: $G = -I$

Figure: Ball (source: scienities.com)
Real world illustrations 2: $G = -I$

Figure: Ball *(source: scienities.com)*

Figure: Simplex *(source: AliExpress)*
Real world illustrations 2: \(G = -I \)

Figure: Ball (source: scienities.com)

Figure: Simplex (source: AliExpress)

Figure: Ice cream cones (source: pngpix)
By-product of independent interest

Given a real Hilbert space $X \neq \{0\}$, if $A : X \rightarrow X$ is a positive semidefinite and invertible linear operator, then A is coercive (elliptic, strongly monotone). In particular, A is positive definite. Actually, $\langle Ax, x \rangle \geq \|A^{-1}\|^{-1} \|x\|^2$, $\forall x \in X$ and $\|A^{-1}\|^{-1}$ is the optimal (largest possible) coercivity coefficient.

The lemma is essentially a quantitative converse of the celebrated Lax-Milgram theorem from PDE. LM's theorem states that if $B(x, y) = \langle Ax, y \rangle$ is a continuous and coercive bilinear form (in particular, $\langle Ax, x \rangle > 0$ when $x \neq 0$), then A is invertible. The lemma states that if A is positive definite and invertible, then B is coercive with optimal coercivity coefficient $\|A^{-1}\|^{-1}$.
Lemma

Given a real Hilbert space $X \neq \{0\}$, if $A : X \to X$ is a positive semidefinite and invertible linear operator, then A is coercive (elliptic, strongly monotone). In particular, A is positive definite. Actually,

$$\langle Ax, x \rangle \geq \|A^{-1}\|^{-1}\|x\|^2, \quad \forall x \in X$$

and $\|A^{-1}\|^{-1}$ is the optimal (largest possible) coercivity coefficient.
By-product of independent interest

Lemma

Given a real Hilbert space $X \neq \{0\}$, if $A : X \to X$ is a positive semidefinite and invertible linear operator, then A is coercive (elliptic, strongly monotone). In particular, A is positive definite. Actually,

$$\langle Ax, x \rangle \geq \|A^{-1}\|^{-1}\|x\|^2, \quad \forall x \in X$$

and $\|A^{-1}\|^{-1}$ is the optimal (largest possible) coercivity coefficient.

- The lemma is essentially a quantitative converse of the celebrated Lax-Milgram theorem from PDE
Lemma

Given a real Hilbert space $X \neq \{0\}$, if $A : X \to X$ is a positive semidefinite and invertible linear operator, then A is coercive (elliptic, strongly monotone). In particular, A is positive definite. Actually,

$$\langle Ax, x \rangle \geq \|A^{-1}\|^{-1}\|x\|^2, \quad \forall x \in X$$

and $\|A^{-1}\|^{-1}$ is the optimal (largest possible) coercivity coefficient.

- The lemma is essentially a quantitative converse of the celebrated Lax-Milgram theorem from PDE.
- LM’s theorem states that if $B(x, y) = \langle Ax, y \rangle$ is a continuous and coercive bilinear form (in particular, $\langle Ax, x \rangle > 0$ when $x \neq 0$), then A is invertible.
By-product of independent interest

Lemma

Given a real Hilbert space $X \neq \{0\}$, if $A : X \to X$ is a positive semidefinite and invertible linear operator, then A is coercive (elliptic, strongly monotone). In particular, A is positive definite. Actually,

$$\langle Ax, x \rangle \geq \|A^{-1}\|^{-1}\|x\|^2, \quad \forall x \in X$$

and $\|A^{-1}\|^{-1}$ is the optimal (largest possible) coercivity coefficient.

- The lemma is essentially a quantitative converse of the celebrated Lax-Milgram theorem from PDE

LM’s theorem states that if $B(x, y) = \langle Ax, y \rangle$ is a continuous and coercive bilinear form (in particular, $\langle Ax, x \rangle > 0$ when $x \neq 0$), then A is invertible.

- The lemma states that if A is positive definite and invertible, then B is coercive with optimal coercivity coefficient $\|A^{-1}\|^{-1}$.
The End

The papers and slides can be found online:

- **Legendre-Fenchel:**
 - http://www.heldermann.de/JCA/JCA26/JCA261/jca26016.htm

- **Convex geometry:** https://arxiv.org/abs/1708.09741

- **Slideshow:** http://w3.impa.br/~dream/talks