Fixed points of polarity type operators

Daniel Reem
(joint work with Simeon Reich)

Department of Mathematics, The Technion, Haifa, Israel

E-mail: dream@technion.ac.il

http://w3.impa.br/~dream

Nonlinear Analysis and Optimization Seminar, The Technion, Haifa, Israel, 13 August 2017
(50-60 minutes)
The goal

To solve the following geometric fixed point equation:

\[C = (GC) \circ C. \] (1)

Here:

- \(\emptyset \neq C \) is the unknown subset,
- \(C \) is contained in a real Hilbert space \(X \neq \{0\} \),
- \(G : X \to X \) is a given continuous invertible linear operator,
- \(GC = \{Gc : c \in C\} \).

The polar (or dual) of \(\emptyset \neq S \subseteq X \) is the set \(S^\circ = \{x^* \in X : \langle x^*, s \rangle \leq 1 \forall s \in S\} \).
The goal

To solve the following geometric fixed point equation:

\[C = (GC) \circ . \]
The goal

To solve the following geometric fixed point equation:

\[C = (GC)^\circ. \]
The goal

To solve the following geometric fixed point equation:

\[C = (GC)^\circ. \] \hspace{1cm} (1)

Here:
The goal

To solve the following geometric fixed point equation:

\[C = (GC)^\circ. \] \hspace{1cm} (1)

Here:

- \(\emptyset \neq C \) is the unknown subset,
The goal

To solve the following geometric fixed point equation:

\[C = (GC)^\circ. \] \hspace{1cm} (1)

Here:

- \(\emptyset \neq C \) is the unknown subset,
- \(C \) is contained in a real Hilbert space \(X \neq \{0\} \),
The goal

To solve the following geometric fixed point equation:

\[C = (GC)^\circ. \] \hspace{2cm} (1)

Here:

- \(\emptyset \neq C \) is the unknown subset,
- \(C \) is contained in a real Hilbert space \(X \neq \{0\} \),
- \(G : X \to X \) is a given continuous invertible linear operator,
The goal

To solve the following geometric fixed point equation:

\[C = (GC)^{\circ}. \] (1)

Here:

- $\emptyset \neq C$ is the unknown subset,
- C is contained in a real Hilbert space $X \neq \{0\}$,
- $G : X \to X$ is a given continuous invertible linear operator,
- $GC := \{Gc : c \in C\}$,
The goal

To solve the following geometric fixed point equation:

\[C = (GC)^\circ. \] (1)

Here:

- \(\emptyset \neq C \) is the unknown subset,
- \(C \) is contained in a real Hilbert space \(X \neq \{0\} \),
- \(G : X \to X \) is a given continuous invertible linear operator,
- \(GC := \{ Gc : c \in C \} \),
- The polar (or dual) of \(\emptyset \neq S \subseteq X \) is the set

\[S^\circ := \{ x^* \in X : \langle x^*, s \rangle \leq 1 \ \forall s \in S \}. \]
Considering (1): first motivation

It is a generalization of the equation $C = C \circ$, (2)

The solutions of (2) are the self-polar sets.

Well-known fact: (2) has a unique solution: the unit ball.
Considering (1): first motivation

- It is a generalization of the equation

\[C = C^\circ, \quad (2) \]
Considering (1): first motivation

- It is a generalization of the equation

\[C = C^\circ, \] \hspace{1cm} (2)

- The solutions of (2) are the self-polar sets
Considering (1): first motivation

- It is a **generalization** of the equation
 \[C = C^\circ, \] \hspace{1cm} (2)

- The solutions of (2) are the **self-polar sets**

- **Well-known fact:** (2) has a unique solution: the unit ball.
Corollary of the well-known fact:
The only norm which can be defined on \mathbb{R}^n so that its unit ball coincides with the unit ball of its dual norm is the Euclidean norm. Here we identify the dual space with \mathbb{R}^n and consider both balls as subsets of \mathbb{R}^n.

A clarification related to the corollary: if $C \subseteq X$ is centrally symmetric (i.e., $C = -C$), closed, convex, bounded, and the origin is an interior point of C, then C is the unit ball of some norm, C° is the unit ball of the dual norm.
Corollary of the well-known fact:

- The only norm which can be defined on \mathbb{R}^n so that its unit ball coincides with the unit ball of its dual norm is the Euclidean norm.
Corollary of the well-known fact:

- The only norm which can be defined on \mathbb{R}^n so that its unit ball coincides with the unit ball of its dual norm is the Euclidean norm.
- Here we identify the dual space with \mathbb{R}^n and consider both balls as subsets of \mathbb{R}^n.
Corollary of the well-known fact:

- The only norm which can be defined on \mathbb{R}^n so that its unit ball coincides with the unit ball of its dual norm is the Euclidean norm.

- Here we identify the dual space with \mathbb{R}^n and consider both balls as subsets of \mathbb{R}^n.

A clarification related to the corollary: if $C \subseteq X$ is centrally symmetric (i.e., $C = -C$), closed, convex, bounded, and the origin is an interior point of C, then
Corollary of the well-known fact:

- The only norm which can be defined on \mathbb{R}^n so that its unit ball coincides with the unit ball of its dual norm is the Euclidean norm.
- Here we identify the dual space with \mathbb{R}^n and consider both balls as subsets of \mathbb{R}^n.

A clarification related to the corollary: if $C \subseteq X$ is centrally symmetric (i.e., $C = -C$), closed, convex, bounded, and the origin is an interior point of C, then

- C is the unit ball of some norm,
Corollary of the well-known fact:

- The only norm which can be defined on \mathbb{R}^n so that its unit ball coincides with the unit ball of its dual norm is the Euclidean norm.
- Here we identify the dual space with \mathbb{R}^n and consider both balls as subsets of \mathbb{R}^n.

A clarification related to the corollary: if $C \subseteq X$ is centrally symmetric (i.e., $C = -C$), closed, convex, bounded, and the origin is an interior point of C, then

- C is the unit ball of some norm,
- C° is the unit ball of the dual norm
Illustration of the corollary: $X = \mathbb{R}^2$, $C \neq C^\circ$
Illustration of the corollary: $X = \mathbb{R}^2$, $C \neq C^\circ$

Figure: C is the unit ball of ℓ_1

Figure: C° is the unit ball of $\ell_\infty \cong \ell_1^*$
Illustration of the corollary: \(X = \mathbb{R}^3, \ C \neq C^\circ \)
Illustration of the corollary: $X = \mathbb{R}^3$, $C \neq C^\circ$

Figure: C is an approximation of the unit ball of $\ell_{1.5}$

Figure: C° is an approximation of the unit ball of $\ell_3 \cong \ell_{1.5}^*(\frac{1}{1.5} + \frac{1}{3} = 1)$
Illustration of the corollary: $X = \mathbb{R}^3, \ C = C^\circ$
Illustration of the corollary: $X = \mathbb{R}^3$, $C = C^\circ$

Figure: C is a realistic illustration of the Euclidean unit ball (source: scienities.com)

Figure: $C^\circ = C$
Considering (1): second motivation

Originates in a relatively recent branch of research in convex geometry.

In some of the works belonging to this branch, certain order reversing operators acting on various classes of finite-dimensional geometric objects were considered. For instance, Böröczky-Schneider 2008: objects are compact and convex subsets of \mathbb{R}^n containing the origin in their interior, Schneider 2008: objects are closed and convex cones, Artstein-Avidan and Milman 2008, Milman-Segal-Slomka 2011, Slomka 2011: objects are closed and convex subsets of \mathbb{R}^n containing the origin, Artstein-Avidan and Slomka 2012: objects are n-dimensional centrally symmetric ellipsoids.

In all of these works $n \in \mathbb{N}$ satisfies either $n \geq 2$ or $n \geq 3$.
Considering (1): second motivation

- Originates in a relatively recent branch of research in convex geometry.
Considering (1): second motivation

- Originates in a relatively recent branch of research in convex geometry.
- In some of the works belonging to this branch, certain order reversing operators acting on various classes of finite-dimensional geometric objects were considered. For instance,
Considering (1): second motivation

- Originates in a relatively recent branch of research in convex geometry.

- In some of the works belonging to this branch, certain order reversing operators acting on various classes of finite-dimensional geometric objects were considered. For instance,

 - Böröczky-Schneider 2008: objects are compact and convex subsets of \mathbb{R}^n containing the origin in their interior,
Considering (1): second motivation

- Originates in a relatively recent branch of research in convex geometry.

- In some of the works belonging to this branch, certain order reversing operators acting on various classes of finite-dimensional geometric objects were considered. For instance,

 - Böröczky-Schneider 2008: objects are compact and convex subsets of \mathbb{R}^n containing the origin in their interior,
 - Schneider 2008: objects are closed and convex cones,
Considering (1): second motivation

- Originates in a relatively recent branch of research in convex geometry.

- In some of the works belonging to this branch, certain order reversing operators acting on various classes of finite-dimensional geometric objects were considered. For instance,
 - **Böröczky-Schneider 2008**: objects are compact and convex subsets of \mathbb{R}^n containing the origin in their interior,
 - **Schneider 2008**: objects are closed and convex cones,
 - **Artstein-Avidan and Milman 2008, Milman-Segal-Slomka 2011, Slomka 2011**: objects are closed and convex subsets of \mathbb{R}^n containing the origin,
Considering (1): second motivation

- Originates in a relatively recent branch of research in convex geometry.
- In some of the works belonging to this branch, certain order reversing operators acting on various classes of finite-dimensional geometric objects were considered. For instance,
 - **Böröczky-Schneider 2008**: objects are compact and convex subsets of \mathbb{R}^n containing the origin in their interior,
 - **Schneider 2008**: objects are closed and convex cones,
 - **Artstein-Avidan and Milman 2008, Milman-Segal-Slomka 2011, Slomka 2011**: objects are closed and convex subsets of \mathbb{R}^n containing the origin,
 - **Artstein-Avidan and Slomka 2012**: objects are n-dimensional centrally symmetric ellipsoids,
Considering (1): second motivation

- Originates in a relatively recent branch of research in convex geometry.

- In some of the works belonging to this branch, certain order reversing operators acting on various classes of finite-dimensional geometric objects were considered. For instance,
 - **Böröczky-Schneider 2008**: objects are compact and convex subsets of \(\mathbb{R}^n \) containing the origin in their interior,
 - **Schneider 2008**: objects are closed and convex cones,
 - **Artstein-Avidan and Milman 2008, Milman-Segal-Slomka 2011, Slomka 2011**: objects are closed and convex subsets of \(\mathbb{R}^n \) containing the origin,
 - **Artstein-Avidan and Slomka 2012**: objects are \(n \)-dimensional centrally symmetric ellipsoids,
 - In all of these works \(n \in \mathbb{N} \) satisfies either \(n \geq 2 \) or \(n \geq 3 \).
Considering (1): second motivation (Cont.)

A central property that was established there: these operators must have the form $T(C) = AC \circ$ for some invertible linear operator $A: \mathbb{R}^n \to \mathbb{R}^n$.

Equation (1) is directly related to these works because if we denote $T(C) := (GC) \circ$, then a simple verification shows that $T(C) = (G^*)^{-1}C \circ$.
A central property that was established there: these operators must have the form $T(C) = AC^\circ$ for some invertible linear operator $A : \mathbb{R}^n \to \mathbb{R}^n$.

Equation (1) is directly related to these works because if we denote $T(C) := (GC^\circ)$, then a simple verification shows that $T(C) = (G^* - 1)C^\circ$.

Reem, Reich (Technion)
Fixed points of polarity type operators
13 August 2017 9 / 32
A central property that was established there: these operators must have the form \(T(C) = AC^\circ \) for some invertible linear operator \(A : \mathbb{R}^n \to \mathbb{R}^n \).

Equation (1) is directly related to these works because if we denote \(T(C) := (GC)^\circ \), then a simple verification shows that

\[
T(C) = (G^*)^{-1} C^\circ.
\]
Considering (1): third motivation

It has some similarities with the following fixed point equation:

\[f(x) := \tau f^*(Ex + c) + \langle w, x \rangle + \beta, \quad x \in X \]

Here: \(X \neq \{0\} \) is a real Hilbert space, \(f: X \to [-\infty, \infty] \) is the unknown function, \(\tau > 0 \), \(c \in X \), \(w \in X \), and \(\beta \in \mathbb{R} \) are given, \(E: X \to X \) is a given continuous linear invertible operator, \(f^*(x^*) := \sup \{ \langle x^*, x \rangle - f(x) : x \in X \} \), \(x^* \in X \), is the Legendre-Fenchel transform (the convex conjugate) of \(f \).
Considering (1): third motivation

- **It has some similarities** with the following fixed point equation:

\[
 f(x) := \tau f^*(Ex + c) + \langle w, x \rangle + \beta, \quad x \in X
\]

(3)
Considering (1): third motivation

- **It has some similarities** with the following fixed point equation:

\[f(x) := \tau f^*(E x + c) + \langle w, x \rangle + \beta, \quad x \in X \]

(3)

- Here:

\[X \neq \{0\} \] is a real Hilbert space, \(f: X \to [-\infty, \infty] \) is the unknown function, \(\tau > 0, c \in X, w \in X, \text{ and } \beta \in \mathbb{R} \) are given, \(E: X \to X \) is a given continuous linear invertible operator, \(f^*(x^*) := \sup \{ \langle x^*, x \rangle - f(x) : x \in X \} \), \(x^* \in X \), is the Legendre-Fenchel transform (the convex conjugate) of \(f \).
Considering (1): third motivation

- **It has some similarities** with the following fixed point equation:

\[
f(x) := \tau f^*(E x + c) + \langle w, x \rangle + \beta, \quad x \in X
\]

(3)

- Here:
 - \(X \neq \{0\}\) is a real Hilbert space,
Considering (1): third motivation

- **It has some similarities** with the following fixed point equation:

\[f(x) := \tau f^*(Ex + c) + \langle w, x \rangle + \beta, \quad x \in X \quad (3) \]

- Here:
 - \(X \neq \{0\} \) is a real Hilbert space,
 - \(f : X \to [-\infty, \infty] \) is the unknown function,
Considering (1): third motivation

- **It has some similarities** with the following fixed point equation:

\[
f(x) := \tau f^*(E x + c) + \langle w, x \rangle + \beta, \quad x \in X\tag{3}
\]

- Here:
 - \(X \neq \{0\}\) is a real Hilbert space,
 - \(f : X \to [-\infty, \infty]\) is the unknown function,
 - \(\tau > 0, \ c \in X, \ w \in X, \ \text{and} \ \beta \in \mathbb{R}\) are given,
Considering (1): third motivation

- **It has some similarities** with the following fixed point equation:

\[f(x) := \tau f^*(Ex + c) + \langle w, x \rangle + \beta, \quad x \in X \quad (3) \]

- Here:
 - \(X \neq \{0\} \) is a real Hilbert space,
 - \(f : X \to [-\infty, \infty] \) is the unknown function,
 - \(\tau > 0, \ c \in X, \ w \in X, \ \text{and} \ \beta \in \mathbb{R} \) are given,
 - \(E : X \to X \) is a given continuous linear invertible operator,
 - \(f^*(x^*) := \sup \{ \langle x^*, x \rangle - f(x) : x \in X \}, \quad x^* \in X \),
Considering (1): third motivation

- **It has some similarities** with the following fixed point equation:

\[f(x) := \tau f^*(Ex + c) + \langle w, x \rangle + \beta, \quad x \in X \]

(3)

- Here:
 - \(X \neq \{0\} \) is a real Hilbert space,
 - \(f : X \to [-\infty, \infty] \) is the unknown function,
 - \(\tau > 0, \; c \in X, \; w \in X, \) and \(\beta \in \mathbb{R} \) are given,
 - \(E : X \to X \) is a given continuous linear invertible operator,

\[f^*(x^*) := \sup\{\langle x^*, x \rangle - f(x) : x \in X\}, \quad x^* \in X, \]

is the Legendre-Fenchel transform (the convex conjugate) of \(f \).
Equation (3) can be thought of as being a convex analytic version of (1). Both have some similarities in their structure, both have several similarities in the properties of the corresponding solution sets. For example, in both cases the solution sets are very sensitive to the various parameters which appear there. Equation (3) was investigated recently (joint work with Iusem and Reich, 2017). Some of the results mentioned in that joint work are useful for deriving some of the results of our work.
Equation (3) can be thought of as being a convex analytic version of (1):
Equation (3) can be thought of as being a **convex analytic version** of (1):

Both have **some similarities** in their structure,
Equation (3) can be thought of as being a convex analytic version of (1):

Both have some similarities in their structure,

both have several similarities in the properties of the corresponding solution sets.
Equation (3) can be thought of as being a convex analytic version of (1):

- Both have some similarities in their structure,
- both have several similarities in the properties of the corresponding solution sets. For example, in both cases the solution sets are very sensitive to the various parameters which appear there.
Considering (1): third motivation (Cont.)

- Equation (3) can be thought of as being a convex analytic version of (1):
- Both have some similarities in their structure,
- both have several similarities in the properties of the corresponding solution sets. For example, in both cases the solution sets are very sensitive to the various parameters which appear there.
- Equation (3) was investigated recently (joint work with Iusem and Reich, 2017)
Equation (3) can be thought of as being a convex analytic version of (1):

Both have some similarities in their structure,

both have several similarities in the properties of the corresponding solution sets. For example, in both cases the solution sets are very sensitive to the various parameters which appear there.

Equation (3) was investigated recently (joint work with Iusem and Reich, 2017)

Some of the results mentioned in that joint work are useful for deriving some of the results of our work.
Contributions: The classification theorem

Let $X = \mathbb{R}$ be a real Hilbert space, $G : X \to X$ a continuous and invertible linear operator, and consider equation (1) with an unknown $\emptyset \neq C \subseteq X$:

$$C = (GC) \circ,$$

The following statements hold:

(i) Any solution to (1) must be closed and convex, and must contain 0.

(ii) If G is positive definite, then there exists a unique solution to (1): the ellipsoid of the form $C = \{ x \in X : \langle Gx, x \rangle \leq 1 \}$.

(iii) If G is not positive definite, then there are cases where (1) has several (possibly infinitely many) solutions.

There are cases where (1) does not have any solution which belongs to the class of bounded subsets of X which contain 0 in their interiors.
Theorem

- $X \neq \{0\}$ is a real Hilbert space,
Contributions: The classification theorem

Theorem

- \(X \neq \{0\}\) is a real Hilbert space,
- \(G : X \rightarrow X\) is a continuous and invertible linear operator,
Contributions: The classification theorem

Theorem

- $X \neq \{0\}$ is a real Hilbert space,
- $G : X \to X$ is a continuous and invertible linear operator,
- Consider equation (1) with an unknown $\emptyset \neq C \subseteq X$:

 \[
 C = (GC)^°,
 \]

 - The following statements hold:
 - (i) Any solution to (1) must be closed and convex, and must contain 0.
 - (ii) If G is positive definite, then there exists a unique solution to (1): the ellipsoid of the form $C = \{ x \in X : \langle Gx, x \rangle \leq 1 \}$.
 - (iii) If G is not positive definite, then there are cases where (1) has several (possibly infinitely many) solutions.
 - (iv) There are cases where (1) does not have any solution which belongs to the class of bounded subsets of X which contain 0 in their interiors.
Contributions: The classification theorem

Theorem

- $X \neq \{0\}$ is a real Hilbert space,
- $G : X \to X$ is a continuous and invertible linear operator,
- Consider equation (1) with an unknown $\emptyset \neq C \subseteq X$:
 \[C = (GC)^\circ, \]
- The following statements hold:
Theorem

- $X \neq \{0\}$ is a real Hilbert space,
- $G : X \rightarrow X$ is a continuous and invertible linear operator,
- Consider equation (1) with an unknown $\emptyset \neq C \subseteq X$:
 \[C = (GC)^\circ, \]
- **The following statements hold:**
 (i) Any solution to (1) must be closed and convex, and must contain 0.
Theorem

- \(X \neq \{0\} \) is a real Hilbert space,
- \(G : X \to X \) is a continuous and invertible linear operator,
- Consider equation (1) with an unknown \(\emptyset \neq C \subseteq X \):
 \[C = (GC)^\circ, \]
- The following statements hold:

 (i) Any solution to (1) must be closed and convex, and must contain 0.

 (ii) If \(G \) is positive definite, then there exists a unique solution to (1): the ellipsoid of the form \(C = \{ x \in X : \langle Gx, x \rangle \leq 1 \} \).
Theorem

- $X \not= \{0\}$ is a real Hilbert space,
- $G : X \to X$ is a continuous and invertible linear operator,
- Consider equation (1) with an unknown $\emptyset \not= C \subseteq X$:

 $$C = (GC)^{\circ},$$

- The following statements hold:

 (i) Any solution to (1) must be closed and convex, and must contain 0.
 (ii) If G is positive definite, then there exists a unique solution to (1): the ellipsoid of the form $C = \{x \in X : \langle Gx, x \rangle \leq 1\}$.
 (iii) If G is not positive definite, then
Contributions: The classification theorem

Theorem

- $X \neq \{0\}$ is a real Hilbert space,
- $G : X \rightarrow X$ is a continuous and invertible linear operator,
- Consider equation (1) with an unknown $\emptyset \neq C \subseteq X$:
 \[C = (GC)^\circ, \]
- The following statements hold:

 (i) Any solution to (1) must be closed and convex, and must contain 0.

 (ii) If G is positive definite, then there exists a unique solution to (1): the ellipsoid of the form $C = \{x \in X : \langle Gx, x \rangle \leq 1\}$.

 (iii) If G is not positive definite, then there are cases where (1) has several (possibly infinitely many) solutions.

Reem, Reich (Technion) 13 August 2017 12 / 32
Contributions: The classification theorem

Theorem

- $X \neq \{0\}$ is a real Hilbert space,
- $G : X \to X$ is a continuous and invertible linear operator,
- Consider equation (1) with an unknown $\emptyset \neq C \subseteq X$:

$$C = (GC)^{\circ},$$

The following statements hold:

(i) Any solution to (1) must be closed and convex, and must contain 0.

(ii) If G is positive definite, then there exists a unique solution to (1): the ellipsoid of the form $C = \{x \in X : \langle Gx, x \rangle \leq 1\}$.

(iii) If G is not positive definite, then

1. there are cases where (1) has several (possibly infinitely many) solutions
2. there are cases where (1) does not have any solution which belongs to the class of bounded subsets of X which contain 0 in their interiors.
Our analysis is essentially dimension-free. We obtain a few by-products of possible independent interest: results related to coercive bilinear forms and hence to PDE (to the Lax-Milgram theorem), results related to infinite-dimensional convex geometry, and we introduce the class of semi-skew operators.
Our analysis is essentially \textit{dimension-free}.

We obtain a few by-products of possible independent interest:

- results related to coercive bilinear forms and hence to PDE (to the LaX-Milgram theorem)
- results related to infinite-dimensional convex geometry

we introduce the class of semi-skew operators.
Our analysis is essentially **dimension-free**

We obtain a few by-products **of possible independent interest:**
Our analysis is essentially **dimension-free**

We obtain a few by-products of possible independent interest:

- results related to **coercive bilinear forms** and hence to PDE (to the Lax-Milgram theorem)
Our analysis is essentially **dimension-free**

We obtain a few by-products **of possible independent interest**:

- results related to **coercive bilinear forms** and hence to PDE (to the LaX-Milgram theorem)
- results related to **infinite-dimensional convex geometry**
Our analysis is essentially **dimension-free**

We obtain a few by-products **of possible independent interest:**

- results related to **coercive bilinear forms** and hence to PDE (to the LaX-Milgram theorem)
- results related to **infinite-dimensional convex geometry**
- we introduce the class of **semi-skew operators**.
Example

Now $G : X \to X$ is linear, continuous and invertible but not necessarily positive definite. Assume that there exists an operator $A : X \to X$ positive definite and invertible which satisfies $A = GA^{-1}G^*$. Then the ellipsoid $C := \{x \in X : \langle Ax, x \rangle \leq 1\}$ solves (1).

In particular, if G is an arbitrary unitary operator, then we can take $A := I$ (I is the identity operator) and hence $C := \{x \in X : \|x\| \leq 1\}$ solves (1).
Example

Now $G : X \to X$ is linear, continuous and invertible but not necessarily positive definite.
Now $G : X \rightarrow X$ is linear, continuous and invertible but not necessarily positive definite.

Assume that there exists $A : X \rightarrow X$ positive definite and invertible operator which satisfies

$$A = GA^{-1} G^*.$$
The existence-non-necessarily-uniqueness part

Example

- **Now** \(G : X \to X \) is linear, continuous and invertible but not necessarily positive definite.

- **Assume that** there exists \(A : X \to X \) positive definite and invertible operator which satisfies

 \[
 A = GA^{-1}G^*.
 \]

- Then the **ellipsoid** \(C := \{ x \in X : \langle Ax, x \rangle \leq 1 \} \) solves (1).
Example

- **Now** $G : X \to X$ is linear, continuous and invertible but not necessarily positive definite.

- **Assume that** there exists $A : X \to X$ positive definite and invertible operator which satisfies

 $$A = GA^{-1}G^*.$$

- Then the **ellipsoid** $C := \{x \in X : \langle Ax, x \rangle \leq 1\}$ solves (1).

- In particular, if G is an **arbitrary unitary operator**, then we can take $A := I$ (I is the identity operator) and hence $C := \{x \in X : \|x\| \leq 1\}$ solves (1).
The non-uniqueness part

Let $X := \mathbb{R}$, $G(x) := -x$, $x \in X$, $\lambda > 0$ be arbitrary. Then $C_\lambda := [-1/\lambda, \lambda]$ solves (1), namely $C_\lambda = (C_\lambda) \circ$. In addition, $C_- := (-\infty, 0]$ and $C_+ := [0, \infty)$ solve (1).
Let $X := \mathbb{R}$,
The non-uniqueness part

- Let $X := \mathbb{R}$,
- $G(x) := -x, \; x \in X,$
Let $X := \mathbb{R}$,

$G(x) := -x, \ x \in X$,

$\lambda > 0$ be arbitrary.
Let $X := \mathbb{R}$,

$G(x) := -x, \ x \in X$,

$\lambda > 0$ be arbitrary.

Then $C_\lambda := [-\frac{1}{\lambda}, \lambda]$ solves (1), namely

$$C_\lambda = (-C_\lambda)^\circ.$$
Let $X := \mathbb{R}$,

$G(x) := -x$, $x \in X$,

$\lambda > 0$ be arbitrary.

Then $C_{\lambda} := [-\frac{1}{\lambda}, \lambda]$ solves (1), namely

$$C_{\lambda} = (-C_{\lambda})^\circ.$$

In addition, $C_- := (-\infty, 0]$ and $C_+ := [0, \infty)$ solve (1).
Tools needed in the proof
Tool 1: The Minkowski functional

Let $\emptyset \neq C \subseteq X$, the Minkowski functional: the function $M_C : X \to [0, \infty]$ defined by $M_C(x) := \inf \{ \mu \geq 0 : x \in \mu C \}$, $x \in X$.

Notation: $\mu C := \{ \mu c : c \in C \}$, $\inf \emptyset := \infty$.

K bound (0) (X) is the set of all bounded, convex and closed subsets of X having 0 in their interior.
Tool 1: The Minkowski functional

- Let $\emptyset \neq C \subseteq X$,

$\mu_C := \{\mu_c : c \in C\}$

$\inf \emptyset := \infty$
Tool 1: The Minkowski functional

- Let \(\emptyset \neq C \subseteq X \),

- **The Minkowski functional**: the function \(M_C : X \rightarrow [0, \infty] \) defined by

 \[
 M_C(x) := \inf \{ \mu \geq 0 : x \in \mu C \}, \quad x \in X.
 \]
Tool 1: The Minkowski functional

- Let $\emptyset \neq C \subseteq X$,

- **The Minkowski functional**: the function $M_C : X \to [0, \infty]$ defined by
 \[
 M_C(x) := \inf\{\mu \geq 0 : x \in \mu C\}, \quad x \in X.
 \]

- **Notation**:
 - $\mu C := \{\mu c : c \in C\}$
Tool 1: The Minkowski functional

Let $\emptyset \neq C \subseteq X$,

The Minkowski functional: the function $\mathcal{M}_C : X \to [0, \infty]$ defined by

$$\mathcal{M}_C(x) := \inf\{\mu \geq 0 : x \in \mu C\}, \quad x \in X.$$

Notation:

- $\mu C := \{\mu c : c \in C\}$
- $\inf \emptyset := \infty$
Tool 1: The Minkowski functional

- Let $\emptyset \neq C \subseteq X$,

- **The Minkowski functional:** the function $\mathcal{M}_C : X \to [0, \infty]$ defined by

$$\mathcal{M}_C(x) := \inf\{\mu \geq 0 : x \in \mu C\}, \quad x \in X.$$

- **Notation:**
 - $\mu C := \{\mu c : c \in C\}$
 - $\inf \emptyset := \infty$
 - $\mathcal{K}_{\text{bound},(0)}(X)$ is the set of all bounded, convex and closed subsets of X having 0 in their interior.
Properties of M_C for $C \in \mathcal{K}_{\text{bound},(0)}(X)$

Almost a norm (but not necessarily symmetric), Actually, "Equivalent" to the norm:

Let $r_C > 0$ be the radius of any open ball which is contained in C and containing the origin, $\|C\| := \sup\{\|c\| : c \in C\} < \infty$.

Then:

$\|x\|\|C\| \leq M_C(x) \leq \|x\|r_C, \forall x \in X$.

In particular:

$0 = M_C(0) < M_C(x) < \infty$ for $x \neq 0$.

Given $C_1, C_2 \in \mathcal{K}_{\text{bound},(0)}(X)$, if $M_{C_1} = M_{C_2}$, then $C_1 = C_2$.
Almost a norm (but not necessarily symmetric),
Properties of M_C for $C \in \mathcal{K}_{\text{bound},(0)}(X)$

- Almost a norm (but not necessarily symmetric),
- Actually, "Equivalent" to the norm:
Almost a norm (but not necessarily symmetric),

Actually, “Equivalent” to the norm:

- Let $r_C > 0$ be the radius of any open ball which is contained in C and containing the origin,
Properties of M_C for $C \in K_{\text{bound},(0)}(X)$

- Almost a norm (but not necessarily symmetric),

- Actually, "Equivalent" to the norm:
 - Let $r_C > 0$ be the radius of any open ball which is contained in C and containing the origin,
 - $\|C\| := \sup\{\|c\| : c \in C\} < \infty$.

Given $C_1, C_2 \in K_{\text{bound},(0)}(X)$, if $M_{C_1} = M_{C_2}$, then $C_1 = C_2$.

Reem, Reich (Technion)
Fixed points of polarity type operators
13 August 2017 18 / 32
Almost a norm (but not necessarily symmetric),

Actually, “Equivalent” to the norm:

Let \(r_C > 0 \) be the radius of any open ball which is contained in \(C \) and containing the origin,

\[
\| C \| := \sup \{ \| c \| : c \in C \} < \infty.
\]

Then:

\(M_C(x) \leq \| x \| r_C, \forall x \in X. \)
Almost a norm (but not necessarily symmetric),

Actually, “Equivalent” to the norm:

Let $r_C > 0$ be the radius of any open ball which is contained in C and containing the origin,

$\|C\| := \sup\{\|c\| : c \in C\} < \infty$.

Then:

$$\frac{\|x\|}{\|C\|} \leq M_C(x) \leq \frac{\|x\|}{r_C}, \quad \forall x \in X.$$
Properties of M_C for $C \in \mathcal{K}_{\text{bound},(0)}(X)$

- **Almost a norm (but not necessarily symmetric),**

- Actually, **“Equivalent”** to the norm:
 - Let $r_C > 0$ be the radius of any open ball which is contained in C and containing the origin,
 - $\|C\| := \sup\{\|c\| : c \in C\} < \infty$.
 - Then:
 \[
 \frac{\|x\|}{\|C\|} \leq M_C(x) \leq \frac{\|x\|}{r_C}, \quad \forall x \in X.
 \]

- **In particular:** $0 = M_C(0) < M_C(x) < \infty$ for $x \neq 0$.
Properties of \mathcal{M}_C for $C \in \mathcal{K}_{\text{bound},(0)}(X)$

- Almost a norm (but not necessarily symmetric),
- Actually, "Equivalent" to the norm:
 - Let $r_C > 0$ be the radius of any open ball which is contained in C and containing the origin,
 - $\|C\| := \sup\{\|c\| : c \in C\} < \infty$.
 - Then:
 $$\frac{\|x\|}{\|C\|} \leq \mathcal{M}_C(x) \leq \frac{\|x\|}{r_C}, \quad \forall x \in X.$$
- In particular: $0 = \mathcal{M}_C(0) < \mathcal{M}_C(x) < \infty$ for $x \neq 0$.
- Given $C_1, C_2 \in \mathcal{K}_{\text{bound},(0)}(X)$, if $\mathcal{M}_{C_1} = \mathcal{M}_{C_2}$, then $C_1 = C_2$.
Tool 2: the polar of M_C for $C \in \mathcal{K}_{\text{bound},(0)}(X)$
Tool 2: the polar of M_C for $C \in \mathcal{K}_{\text{bound},(0)}(X)$

$$M_C^\circ(x^*) := \sup \left\{ \frac{\langle x^*, x \rangle}{M_C(x)} : 0 \neq x \in X \right\}$$

$$= \sup \{ \langle x^*, x \rangle : x \in X, M_C(x) = 1 \}, \quad x^* \in X,$$
Tool 2: the polar of \mathcal{M}_C for $C \in \mathcal{K}_{\text{bound},(0)}(X)$

\[
\mathcal{M}_C(x^*) := \sup \left\{ \frac{\langle x^*, x \rangle}{\mathcal{M}_C(x)} : 0 \neq x \in X \right\}
\]

\[
= \sup \{ \langle x^*, x \rangle : x \in X, \mathcal{M}_C(x) = 1 \}, \quad x^* \in X,
\]

- \mathcal{M}_C° enjoys similar properties to \mathcal{M}_C.
Tool 3: Duality between M_C and M_C°

M_C and M_C° satisfy a dual inequality to M_C:

$$r_C \| x^* \| \leq M_C^\circ(x^*) \leq \| C \| \| x^* \| , \quad \forall x^* \in X,$$

If $C = -C$, then M_C° is the dual norm of M_C.

Reminder: the polar set:

$$C^\circ := \{ x^* \in X : \langle x^*, c \rangle \leq 1, \quad \forall c \in C \}.$$
Tool 3: Duality between \mathcal{M}_C and \mathcal{M}_C°

- \mathcal{M}_C° satisfies a dual inequality to \mathcal{M}_C:

$$\mathcal{M}_C^\circ \| x^* \| \leq \mathcal{M}_C(\| x^* \|) \leq \| C \| \| x^* \|, \quad \forall x^* \in X,$$

If $C = -C$, then \mathcal{M}_C° is the dual norm of \mathcal{M}_C.

Reminder:

- The polar set:
 $$C^\circ := \{ x^* \in X : \langle x^*, c \rangle \leq 1, \forall c \in C \}.$$
Tool 3: Duality between M_C and M_C°

- M_C° satisfies a dual inequality to M_C:

$$r_C \|x^*\| \leq M_C^\circ(x^*) \leq \|C\| \|x^*\|, \quad \forall x^* \in X,$$
Tool 3: Duality between M_C and M_C°

- M_C° satisfies a dual inequality to M_C:
 \[r_C \|x^*\| \leq M_C^\circ(x^*) \leq \|C\|\|x^*\|, \quad \forall x^* \in X, \]

- If $C = -C$, then M_C° is the dual norm of M_C
Tool 3: Duality between M_C and M_C°

- M_C° satisfies a dual inequality to M_C:

$$r_C \|x^*\| \leq M_C^\circ(x^*) \leq \|C\| \|x^*\|, \quad \forall x^* \in X,$$

- If $C = -C$, then M_C° is the dual norm of M_C

Reminder:

- (0)
Tool 3: Duality between M_C and M_C°

M_C° satisfies a dual inequality to M_C:

$$r_C \|x^*\| \leq M_C^\circ(x^*) \leq \|C\|\|x^*\|, \quad \forall x^* \in X,$$

If $C = -C$, then M_C° is the dual norm of M_C

Reminder: the polar set:

$$C^\circ := \{x^* \in X : \langle x^*, c \rangle \leq 1, \forall c \in C\}.$$
Tool 3: Duality between \mathcal{M}_C and \mathcal{M}_C°

- \mathcal{M}_C° satisfies a dual inequality to \mathcal{M}_C:
 \[r_C \|x^*\| \leq \mathcal{M}_C^\circ(x^*) \leq \|C\|\|x^*\|, \quad \forall x^* \in X, \]

- If $C = -C$, then \mathcal{M}_C° is the dual norm of \mathcal{M}_C

- **Reminder**: the polar set:
 \[C^\circ := \{ x^* \in X : \langle x^*, c \rangle \leq 1 \quad \forall c \in C \}. \]
Tool 3: Duality between M_C and M_C°

- M_C° satisfies a dual inequality to M_C:
 \[r_C \|x^*\| \leq M_C^\circ(x^*) \leq \|C\|\|x^*\|, \quad \forall x^* \in X, \]

- If $C = -C$, then M_C° is the dual norm of M_C

- **Reminder:** the polar set:
 \[C^\circ := \{x^* \in X : \langle x^*, c \rangle \leq 1 \quad \forall c \in C\}. \]

Lemma

If $C \in \mathcal{K}_{\text{bound},(0)}(X)$, then $C^\circ \in \mathcal{K}_{\text{bound},(0)}(X)$ and
Tool 3: Duality between M_C and M_C°

- M_C° satisfies a dual inequality to M_C:

$$r_C \|x^*\| \leq M_C^\circ(x^*) \leq \|C\| \|x^*\|, \quad \forall x^* \in X,$$

- If $C = -C$, then M_C° is the dual norm of M_C

Reminder: the polar set:

$$C^\circ := \{x^* \in X : \langle x^*, c \rangle \leq 1 \quad \forall c \in C\}.$$

Lemma

If $C \in \mathcal{K}_{\text{bound},(0)}(X)$, then $C^\circ \in \mathcal{K}_{\text{bound},(0)}(X)$ and

$$M_C^\circ = M_C^C.$$
Tool 4: conjugacy and polarity

Lemma

Let $\phi : \mathbb{R} \rightarrow (-\infty, \infty]$. Assume that $\phi(t) = \infty$ for every $t \in (-\infty, 0)$. Then for each $C \in K$ bound $(0)(X)$ and each $x^* \in X(\phi \circ M C)^* (x^*) = \phi^*(M \circ C(x^*))$. If, in addition, ϕ is differentiable over $[0, \infty)$, ϕ' is strictly increasing on $[0, \infty)$ and maps it onto itself, and $\phi(0) = \phi'(0) = 0$, then $(\phi \circ M C)^* (x^*) = (\phi')^{-1}(M \circ C(x^*)) M \circ C(x^*) - \phi((\phi')^{-1}(M \circ C(x^*))).$ In particular, for $\phi(t) = \frac{1}{2} t^2$ for $t \in [0, \infty)$, we have $(\frac{1}{2} M^2 C) (x^*) = \frac{1}{2} (M \circ C(x^*))^2.$
Lemma

Let $\phi : \mathbb{R} \to (-\infty, \infty]$.
Lemma

- Let $\phi : \mathbb{R} \rightarrow (-\infty, \infty]$.
- Assume that $\phi(t) = \infty$ for every $t \in (-\infty, 0)$.

In particular, for $\phi(t) = \frac{1}{2}t^2$ for $t \in [0, \infty)$, we have $(\frac{1}{2}M_2C)^\ast (x^\ast) = \frac{1}{2}(M\circ C(x^\ast))^2$.

Reem, Reich (Technion)
Fixed points of polarity type operators
13 August 2017
Lemma

- Let \(\phi : \mathbb{R} \rightarrow (-\infty, \infty] \).
- Assume that \(\phi(t) = \infty \) for every \(t \in (-\infty, 0) \).
- Then for each \(C \in \mathcal{K}_{\text{bound},(0)}(X) \) and each \(x^* \in X \)
Lemma

Let \(\phi : \mathbb{R} \to (-\infty, \infty] \).

Assume that \(\phi(t) = \infty \) for every \(t \in (-\infty, 0) \).

Then for each \(C \in \mathcal{K}_{\text{bound},(0)}(X) \) and each \(x^* \in X \)

\[
(\phi \circ M_C)^*(x^*) = \phi^*(M_C^*(x^*)).
\]
Lemma

- Let \(\phi : \mathbb{R} \rightarrow (-\infty, \infty] \).
- Assume that \(\phi(t) = \infty \) for every \(t \in (-\infty, 0) \).
- Then for each \(C \in \mathcal{K}_{\text{bound},(0)}(X) \) and each \(x^* \in X \)
 \[
 (\phi \circ \mathcal{M}_C)^*(x^*) = \phi^*(\mathcal{M}_C^*(x^*)).
 \]
- If, in addition, \(\phi \) is differentiable over \([0, \infty)\),
Lemma

- Let $\phi : \mathbb{R} \to (-\infty, \infty]$.
- Assume that $\phi(t) = \infty$ for every $t \in (-\infty, 0)$.
- Then for each $C \in \mathcal{K}_{\text{bound},(0)}(X)$ and each $x^* \in X$
 \[(\phi \circ M_C)^*(x^*) = \phi^*(M_C^*(x^*)).\]
- If, in addition, ϕ is differentiable over $[0, \infty)$, ϕ' is strictly increasing on $[0, \infty)$ and maps it onto itself,
Lemma

- Let $\phi : \mathbb{R} \to (-\infty, \infty]$.
- Assume that $\phi(t) = \infty$ for every $t \in (-\infty, 0)$.
- Then for each $C \in \mathcal{K}_{\text{bound},(0)}(X)$ and each $x^* \in X$
 $$(\phi \circ M_C)^*(x^*) = \phi^*(M_C^*(x^*)�).$$
- If, in addition, ϕ is differentiable over $[0, \infty)$, ϕ' is strictly increasing on $[0, \infty)$ and maps it onto itself, and $\phi(0) = \phi'(0) = 0$,
Tool 4: conjugacy and polarity

Lemma

- Let $\phi : \mathbb{R} \to (-\infty, \infty]$.
- Assume that $\phi(t) = \infty$ for every $t \in (-\infty, 0)$.
- Then for each $C \in \mathcal{K}_{\text{bound},(0)}(X)$ and each $x^* \in X$

 $$
 (\phi \circ M_C)^*(x^*) = \phi^*(M_C^0(x^*)).
 $$

- If, in addition, ϕ is differentiable over $[0, \infty)$, ϕ' is strictly increasing on $[0, \infty)$ and maps it onto itself, and $\phi(0) = \phi'(0) = 0$, then
Lemma

Let $\phi : \mathbb{R} \rightarrow (-\infty, \infty]$.

Assume that $\phi(t) = \infty$ for every $t \in (-\infty, 0)$.

Then for each $C \in \mathcal{H}_{\text{bound},(0)}(X)$ and each $x^* \in X$

$$(\phi \circ M_C)^*(x^*) = \phi^*(M_C^o(x^*)).$$

If, in addition, ϕ is differentiable over $[0, \infty)$, ϕ' is strictly increasing on $[0, \infty)$ and maps it onto itself, and $\phi(0) = \phi'(0) = 0$, then

$$(\phi \circ M_C)^*(x^*) = (\phi')^{-1}(M_C^o(x^*)) M_C^o(x^*) - \phi((\phi')^{-1}(M_C^o(x^*))).$$
Tool 4: conjugacy and polarity

Lemma

- Let $\phi : \mathbb{R} \to (-\infty, \infty]$.
- Assume that $\phi(t) = \infty$ for every $t \in (-\infty, 0)$.
- Then for each $C \in \mathcal{K}_{\text{bound},(0)}(X)$ and each $x^* \in X$
 \[(\phi \circ M_C)^*(x^*) = \phi^*(M_C^o(x^*))\].
- If, in addition, ϕ is differentiable over $[0, \infty)$, ϕ' is strictly increasing on $[0, \infty)$ and maps it onto itself, and $\phi(0) = \phi'(0) = 0$, then
 \[(\phi \circ M_C)^*(x^*) = (\phi')^{-1}(M_C^o(x^*)) M_C^o(x^*) - \phi((\phi')^{-1}(M_C^o(x^*)))\].
- In particular, for $\phi(t) = \frac{1}{2} t^2$ for $t \in [0, \infty)$, we have
Lemma

- Let $\phi : \mathbb{R} \to (-\infty, \infty]$.
- Assume that $\phi(t) = \infty$ for every $t \in (-\infty, 0)$.
- Then for each $C \in \mathcal{K}_{\text{bound},(0)}(X)$ and each $x^* \in X$
 \[
 (\phi \circ M_C)^*(x^*) = \phi^*((M_C^\circ)(x^*)).
 \]

- If, in addition, ϕ is differentiable over $[0, \infty)$, ϕ' is strictly increasing on $[0, \infty)$ and maps it onto itself, and $\phi(0) = \phi'(0) = 0$, then
 \[
 (\phi \circ M_C)^*(x^*) = (\phi')^{-1}(M_C^\circ(x^*)) M_C^\circ(x^*) - \phi((\phi')^{-1}(M_C^\circ(x^*))).
 \]

- In particular, for $\phi(t) = \frac{1}{2} t^2$ for $t \in [0, \infty)$, we have
 \[
 \left(\frac{1}{2} M_C^2\right)^*(x^*) = \frac{1}{2} (M_C^\circ(x^*))^2.
 \]
Tool 5: Ellipsoids

Definition

A : X → X is called positive definite if A is linear, continuous, A∗ = A and ⟨Ax, x⟩ > 0 for each 0 ̸= x ∈ X.

Definition

Given a positive definite operator A : X → X, the centrally symmetric ellipsoid induced by A is D := {x ∈ X : ⟨Ax, x⟩ ≤ 1}.
Definition

A : X → X is called positive definite if A is linear, continuous, A* = A and ⟨Ax, x⟩ > 0 for each 0 ≠ x ∈ X.
Definition

A : X → X is called positive definite if A is linear, continuous, A* = A and ⟨Ax, x⟩ > 0 for each 0 ≠ x ∈ X.

Definition

Given a positive definite operator A : X → X, the centrally symmetric ellipsoid induced by A is

\[D := \{ x \in X : \langle Ax, x \rangle \leq 1 \}. \]
Ellipsoids: real world illustrations
Ellipsoids: real world illustrations

Figure: 2D example (source: Bill Frymire)
Ellipsoids: real world illustrations

Figure: 2D example (source: Bill Frymire)

Figure: 3D example (source: http://rugby1823.blogosfere.it)
Lemma

Let $A : X \to X$ be positive definite and invertible, $D := \{ x \in X : \langle Ax, x \rangle \leq 1 \}$ the ellipsoid induced by A.

Then the following statements hold:

(a) $D \in K(0)$.

(b) $MD(x) = \sqrt{\langle Ax, x \rangle}$ for each $x \in X$.

(c) $D^{\circ} = \{ x \in X : \langle A^{-1}x, x \rangle \leq 1 \}$.

Reem, Reich (Technion)
Lemma

Let $A : X \to X$ be positive definite and invertible,

- $D := \{ x \in X : \langle Ax, x \rangle \leq 1 \}$ the ellipsoid induced by A.
- Then the following statements hold:
 - (a) $D \in K(0, X)$
 - (b) $MD(x) = \sqrt{\langle Ax, x \rangle}$ for each $x \in X$
 - (c) $D^\circ = \{ x \in X : \langle A^{-1}x, x \rangle \leq 1 \}$
Lemma

Let \(A : X \to X \) be positive definite and invertible,

\[D := \{ x \in X : \langle Ax, x \rangle \leq 1 \} \] the ellipsoid induced by \(A \).
Lemma

Let $A : X \to X$ be positive definite and invertible,

$D := \{ x \in X : \langle Ax, x \rangle \leq 1 \}$ the ellipsoid induced by A.

Then the following statements hold:

(a) $D \in K(0, X)$

(b) $M_D(x) = \sqrt{\langle Ax, x \rangle}$ for each $x \in X$

(c) $D^\circ = \{ x \in X : \langle A^{-1}x, x \rangle \leq 1 \}$
Lemma

Let $A : X \to X$ be positive definite and invertible,

$D := \{ x \in X : \langle Ax, x \rangle \leq 1 \}$ the ellipsoid induced by A.

Then the following statements hold:

(a) $D \in \mathcal{K}_{\text{bound},(0)}(X)$.

Reem, Reich (Technion)
Lemma

Let \(A : X \to X \) be positive definite and invertible,

\[D := \{ x \in X : \langle Ax, x \rangle \leq 1 \} \] the ellipsoid induced by \(A \).

Then the following statements hold:

(a) \(D \in \mathcal{K}_{\text{bound},(0)}(X) \).

(b) \(M_D(x) = \sqrt{\langle Ax, x \rangle} \) for each \(x \in X \).
Lemma

Let $A : X \to X$ be positive definite and invertible,

$D := \{x \in X : \langle Ax, x \rangle \leq 1\}$ the ellipsoid induced by A.

Then the following statements hold:

(a) $D \in \mathcal{K}_{\text{bound},(0)}(X)$.

(b) $M_D(x) = \sqrt{\langle Ax, x \rangle}$ for each $x \in X$.

(c) $D^\circ = \{x \in X : \langle A^{-1}x, x \rangle \leq 1\}$.
Tool 6: coercive/elliptic bilinear forms

$B: X^2 \to \mathbb{R}$ is a bilinear form when both $b_1(x) := B(x, y)$ is linear for all $y \in X$, and $b_2(y) := B(x, y)$ is linear for all $x \in X$.

For each continuous bilinear form $B: X^2 \to \mathbb{R}$ there exists a unique continuous linear operator $A: X \to X$ such that $B(x, y) = \langle Ax, y \rangle$ for all $x, y \in X$.
Tool 6: coercive/elliptic bilinear forms

- $B : X^2 \to \mathbb{R}$ is a bilinear form when both

\[b_1(x) := B(x, y) \text{ is linear for all } y \in X, \quad b_2(y) := B(x, y) \text{ is linear for all } x \in X. \]

For each continuous bilinear form $B : X^2 \to \mathbb{R}$ there exists a unique continuous linear operator $A : X \to X$ such that

\[B(x, y) = \langle Ax, y \rangle \] for all $x, y \in X$.
Tool 6: coercive/elliptic bilinear forms

- $B : X^2 \rightarrow \mathbb{R}$ is a bilinear form when both
 - $b_1(x) := B(x, y)$ is linear for all $y \in X$, and
Tool 6: coercive/elliptic bilinear forms

- $B : X^2 \rightarrow \mathbb{R}$ is a bilinear form when both
 - $b_1(x) := B(x, y)$ is linear for all $y \in X$, and
 - $b_2(y) := B(x, y)$ is linear for all $x \in X$.

Tool 6: coercive/elliptic bilinear forms

- $B : X^2 \rightarrow \mathbb{R}$ is a bilinear form when both
 - $b_1(x) := B(x, y)$ is linear for all $y \in X$, and
 - $b_2(y) := B(x, y)$ is linear for all $x \in X$.

- For each continuous bilinear form $B : X^2 \rightarrow \mathbb{R}$ there exists a unique continuous linear operator $A : X \rightarrow X$ such that $B(x, y) = \langle Ax, y \rangle$ for all $x, y \in X$.

Reem, Reich (Technion)
A bilinear form $B: X^2 \to \mathbb{R}$ is called coercive (or strongly coercive, or strongly monotone, or elliptic) if there exists $\beta > 0$ such that $B(x, x) \geq \beta \|x\|^2$, $\forall x \in X$.

If B is continuous and symmetric ($B(x, y) = B(y, x)$ for all $x, y \in X$), then A is symmetric; if, in addition, B is coercive, then A is positive definite.

Coercive bilinear forms have various applications in calculus of variations and elliptic partial differential equations, among them Stampacchia's theorem, the Lax-Milgram theorem.
A bilinear form $B : X^2 \to \mathbb{R}$ is called coercive (or strongly coercive, or strongly monotone, or elliptic) if there exists $\beta > 0$ such that $B(x, x) \geq \beta \|x\|^2$, $\forall x \in X$. If B is continuous and symmetric ($B(x, y) = B(y, x)$ for all $x, y \in X$), then A is symmetric; if, in addition, B is coercive, then A is positive definite.
A bilinear form $B : X^2 \rightarrow \mathbb{R}$ is called coercive (or strongly coercive, or strongly monotone, or elliptic) if there exists $\beta > 0$ such that

$$B(x, x) \geq \beta \|x\|^2, \quad \forall x \in X.$$
Coercive bilinear (Cont.)

- A bilinear form \(B : X^2 \to \mathbb{R} \) is called **coercive** (or **strongly coercive**, or **strongly monotone**, or **elliptic**) if there exists \(\beta > 0 \) such that
 \[
 B(x, x) \geq \beta \| x \|^2, \quad \forall x \in X.
 \]

- if \(B \) is continuous and symmetric (\(B(x, y) = B(y, x) \) for all \(x, y \in X \)), then \(A \) is symmetric; if, in addition, \(B \) is coercive, then \(A \) is positive definite.
A bilinear form $B : X^2 \to \mathbb{R}$ is called **coercive** (or **strongly coercive**, or **strongly monotone**, or **elliptic**) if there exists $\beta > 0$ such that

$$B(x, x) \geq \beta \|x\|^2, \quad \forall x \in X.$$

if B is continuous and symmetric ($B(x, y) = B(y, x)$ for all $x, y \in X$), then A is symmetric; if, in addition, B is coercive, then A is positive definite.

Coercive bilinear forms **have various applications in calculus of variations and elliptic partial differential equations**, among them...
A bilinear form $B : X^2 \rightarrow \mathbb{R}$ is called **coercive** (or **strongly coercive**, or **strongly monotone**, or **elliptic**)) if there exists $\beta > 0$ such that

$$B(x, x) \geq \beta \|x\|^2, \quad \forall x \in X.$$

if B is continuous and symmetric ($B(x, y) = B(y, x)$ for all $x, y \in X$), then A is symmetric; if, in addition, B is coercive, then A is positive definite.

Coercive bilinear forms **have various applications in calculus of variations and elliptic partial differential equations**, among them

- Stampacchia’s theorem,
A bilinear form $B : X^2 \to \mathbb{R}$ is called **coercive** (or strongly coercive, or strongly monotone, or elliptic) if there exists $\beta > 0$ such that

$$B(x, x) \geq \beta \|x\|^2, \quad \forall x \in X.$$

If B is continuous and symmetric ($B(x, y) = B(y, x)$ for all $x, y \in X$), then A is symmetric; if, in addition, B is coercive, then A is positive definite.

Coercive bilinear forms **have various applications in calculus of variations and elliptic partial differential equations**, among them

- Stampacchia’s theorem,
- the Lax-Milgram theorem
Let $A : X \to X$ be an invertible positive definite operator.

Let $D = \{ x \in X : \langle Ax, x \rangle \leq 1 \}$ be the ellipsoid induced by A.

The claim $D \in \mathcal{K}(0)(X)$ seems immediate at first glance. However, this is not the case, at least not regarding the boundedness of D.

Actually, the claim is wrong if A is not assumed to be invertible.
Coercive bilinear (Cont.)

- Let $A : X \to X$ be an invertible positive definite operator.
Let $A : X \to X$ be an invertible positive definite operator.

Let $D = \{ x \in X : \langle Ax, x \rangle \leq 1 \}$ be the ellipsoid induced by A.
Coercive bilinear (Cont.)

- Let $A : X \to X$ be an invertible positive definite operator.
- Let $D = \{x \in X : \langle Ax, x \rangle \leq 1\}$ be the ellipsoid induced by A.
- The claim $D \in \mathcal{K}_{\text{bound},(0)}(X)$ seems immediate at first glance.
Let $A : X \rightarrow X$ be an invertible positive definite operator.

Let $D = \{ x \in X : \langle Ax, x \rangle \leq 1 \}$ be the ellipsoid induced by A.

The claim $D \in \mathcal{K}_{\text{bound},(0)}(X)$ seems immediate at first glance.

However, this is not the case, at least not regarding the boundedness of D.
Let $A : X \to X$ be an invertible positive definite operator.

Let $D = \{ x \in X : \langle Ax, x \rangle \leq 1 \}$ be the ellipsoid induced by A.

The claim $D \in \mathcal{K}_{\text{bound},(0)}(X)$ seems immediate at first glance.

However, this is not the case, at least not regarding the boundedness of D.

Actually, the claim is wrong if A is not assumed to be invertible.
The proof of the claim \(D \in K_{\text{bound}}(0) \) is based on the following apparently new lemma:

Lemma

The bilinear form induced by \(A \) is coercive. In fact,

\[
\langle Ax, x \rangle \geq \|A - 1\| - 1 \|x\|_2, \quad \forall x \in X.
\]

The lemma's proof is quite indirect. When \(\dim(X) < \infty \), then a straightforward proof can be given (using eigenvalues and spectral decomposition).
The proof of the claim $D \in \mathcal{K}_{\text{bound},(0)}(X)$ is based on the following apparently new lemma:
The proof of the claim $D \in \mathcal{K}_{\text{bound},(0)}(X)$ is based on the following apparently new lemma:

Lemma

The bilinear form induced by A is coercive. In fact,

$$\langle Ax, x \rangle \geq \|A^{-1}\|^{-1}\|x\|^2, \quad \forall x \in X.$$

The lemma’s proof is quite indirect.
The proof of the claim $D \in \mathcal{K}_{\text{bound},(0)}(X)$ is based on the following apparently new lemma:

Lemma

The bilinear form induced by A is coercive. In fact,

$$\langle Ax, x \rangle \geq \|A^{-1}\|^{-1}\|x\|^2, \quad \forall x \in X.$$

- The lemma’s proof is quite **indirect**
- When $\dim(X) < \infty$, then a straightforward proof can be given (using eigenvalues and spectral decomposition)
The lemma is essentially a quantitative converse of the LaX-Milgram theorem: LM state that if \(B(x, y) = \langle Ax, y \rangle \) is continuous and coercive (hence \(\langle Ax, x \rangle > 0 \) when \(x \neq 0 \)), then \(A \) is invertible.

The lemma states that if \(A \) is positive definite and invertible, then \(B \) is coercive with coefficient \(\| A^{-1} \|^{-1} \).

The lemma also gives the optimal (maximal) coercivity coefficient in LM theorem for symmetric \(B \): Any such coefficient must be at most \(\| A^{-1} \|^{-1} \) (simple check), but LM implies that \(A \) is invertible, hence the lemma implies that the coefficient can be \(\| A^{-1} \|^{-1} \).
The lemma is essentially a quantitative converse of the LaX-Milgram theorem:
The lemma is essentially a quantitative converse of the LaX-Milgram theorem:

- LM state that if \(B(x, y) = \langle Ax, y \rangle \) is continuous and coercive (hence \(\langle Ax, x \rangle > 0 \) when \(x \neq 0 \)), then \(A \) is invertible.
The lemma is essentially a quantitative converse of the LaX-Milgram theorem:

- LM state that if \(B(x, y) = \langle Ax, y \rangle \) is continuous and coercive (hence \(\langle Ax, x \rangle > 0 \) when \(x \neq 0 \)), then \(A \) is invertible.
- The lemma states that if \(A \) is positive definite and invertible, then \(B \) is coercive with coefficient \(\| A^{-1} \|^{-1} \).

Any such coefficient must be at most \(\| A^{-1} \|^{-1} \) (simple check), but LM implies that \(A \) is invertible, hence the lemma implies that the coefficient can be \(\| A^{-1} \|^{-1} \).
The lemma is essentially a quantitative converse of the LaX-Milgram theorem:

- LM state that if $B(x, y) = \langle Ax, y \rangle$ is continuous and coercive (hence $\langle Ax, x \rangle > 0$ when $x \neq 0$), then A is invertible.

- The lemma states that if A is positive definite and invertible, then B is coercive with coefficient $\|A^{-1}\|^{-1}$.

The lemma also gives the optimal (maximal) coercivity coefficient in LM theorem for symmetric B:

\[\|A^{-1}\|^{-1} \]
The lemma is essentially a quantitative converse of the LaX-Milgram theorem:

- LM state that if $B(x, y) = \langle Ax, y \rangle$ is continuous and coercive (hence $\langle Ax, x \rangle > 0$ when $x \neq 0$), then A is invertible.

- The lemma states that if A is positive definite and invertible, then B is coercive with coefficient $\|A^{-1}\|^{-1}$.

The lemma also gives the optimal (maximal) coercivity coefficient in LM theorem for symmetric B:

- Any such coefficient must be at most $\|A^{-1}\|^{-1}$ (simple check),
The lemma is essentially a quantitative converse of the LaX-Milgram theorem:

- LM state that if \(B(x, y) = \langle Ax, y \rangle \) is continuous and coercive (hence \(\langle Ax, x \rangle > 0 \) when \(x \neq 0 \)), then \(A \) is invertible.

- The lemma states that if \(A \) is positive definite and invertible, then \(B \) is coercive with coefficient \(\|A^{-1}\|^{-1} \).

The lemma also gives the optimal (maximal) coercivity coefficient in LM theorem for symmetric \(B \):

- Any such coefficient must be at most \(\|A^{-1}\|^{-1} \) (simple check),

- But LM implies that \(A \) is invertible, hence the lemma implies that the coefficient can be \(\|A^{-1}\|^{-1} \).
Definition

Suppose that \(\dim(X) \geq 2 \). We say that \(E : X \to X \) is a semi-skew operator with respect to the triplet \((u, \alpha_1, \alpha_2)\) (or, briefly, that \(E \) is semi-skew) if the following conditions hold:

1. \(u \in X \) is a unit vector;
2. \(\alpha_1 \) and \(\alpha_2 \) are two real numbers having the same sign (either both are positive or both are negative) and \(\alpha_1 \neq \alpha_2 \);
3. for each \(x \in X \), consider the unique decomposition \(x = x_1 + x_2 \), where \(x_1 \in \mathbb{R}u \) and \(x_2 \in u^\perp \) and identify \(x \) with \((x_1, x_2) \in \mathbb{R}u \times u^\perp \sim X \) and \((x_2, x_1) \in u^\perp \times \mathbb{R}u \sim X \); then
 \[
 E(x_1, x_2) = (\alpha_2 x_2, -\alpha_1 x_1),
 \]
 namely
 \[
 E(x_1 x_2) = (0, \alpha_2 x_2 - \alpha_1 x_1)(x_1 x_2).
 \]
Suppose that \(\dim(X) \geq 2 \). We say that \(E : X \to X \) is a **semi-skew operator** with respect to the triplet \((u, \alpha_1, \alpha_2) \) (or, briefly, that \(E \) is semi-skew) if the following conditions hold:
Definition

Suppose that \(\dim(X) \geq 2 \). We say that \(E : X \to X \) is a **semi-skew operator** with respect to the triplet \((u, \alpha_1, \alpha_2)\) (or, briefly, that \(E \) is semi-skew) if the following conditions hold:

1. \(u \in X \) is a unit vector;
Definition

Suppose that $\dim(X) \geq 2$. We say that $E : X \to X$ is a semi-skew operator with respect to the triplet (u, α_1, α_2) (or, briefly, that E is semi-skew) if the following conditions hold:

1. $u \in X$ is a unit vector;

2. α_1 and α_2 are two real numbers having the same sign (either both of them are positive or both are negative) and $\alpha_1 \neq \alpha_2$;
Definition

Suppose that \(\dim(X) \geq 2 \). We say that \(E : X \to X \) is a **semi-skew operator** with respect to the triplet \((u, \alpha_1, \alpha_2)\) (or, briefly, that \(E \) is semi-skew) if the following conditions hold:

1. \(u \in X \) is a unit vector;
2. \(\alpha_1 \) and \(\alpha_2 \) are two real numbers having the same sign (either both of them are positive or both are negative) and \(\alpha_1 \neq \alpha_2 \);
3. for each \(x \in X \), consider the unique decomposition \(x = x_1 + x_2 \), where \(x_1 \in \mathbb{R}u \) and \(x_2 \in u^\perp \) and identify \(x \) with \((x_1, x_2) \in \mathbb{R}u \times u^\perp \cong X\) and \((x_2, x_1) \in u^\perp \times \mathbb{R}u \cong X\); then \(E(x_1, x_2) = (\alpha_2 x_2, -\alpha_1 x_1) \).
Definition

Suppose that \(\dim(X) \geq 2 \). We say that \(E : X \to X \) is a \textbf{semi-skew operator} with respect to the triplet \((u, \alpha_1, \alpha_2)\) (or, briefly, that \(E \) is semi-skew) if the following conditions hold:

1. \(u \in X \) is a unit vector;

2. \(\alpha_1 \) and \(\alpha_2 \) are two real numbers having the same sign (either both of them are positive or both are negative) and \(\alpha_1 \neq \alpha_2 \);

3. for each \(x \in X \), consider the unique decomposition \(x = x_1 + x_2 \), where \(x_1 \in \mathbb{R}u \) and \(x_2 \in u^\perp \) and identify \(x \) with \((x_1, x_2) \in \mathbb{R}u \times u^\perp \cong X \) and \((x_2, x_1) \in u^\perp \times \mathbb{R}u \cong X \); then \(E(x_1, x_2) = (\alpha_2 x_2, -\alpha_1 x_1) \), namely

\[
E \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 & \alpha_2 \\ -\alpha_1 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}
\]
Definition

Suppose that \(\dim(X) \geq 2 \). We say that \(E : X \to X \) is a **semi-skew operator** with respect to the triplet \((u, \alpha_1, \alpha_2) \) (or, briefly, that \(E \) is semi-skew) if the following conditions hold:

1. \(u \in X \) is a unit vector;
2. \(\alpha_1 \) and \(\alpha_2 \) are two real numbers having the same sign (either both of them are positive or both are negative) and \(\alpha_1 \neq \alpha_2 \);
3. for each \(x \in X \), consider the unique decomposition \(x = x_1 + x_2 \), where \(x_1 \in \mathbb{R}u \) and \(x_2 \in u^\perp \) and identify \(x \) with \((x_1, x_2) \in \mathbb{R}u \times u^\perp \cong X \) and \((x_2, x_1) \in u^\perp \times \mathbb{R}u \cong X \); then \(E(x_1, x_2) = (\alpha_2 x_2, -\alpha_1 x_1) \), namely

\[
E \left(\begin{array}{c} x_1 \\ x_2 \end{array} \right) = \left(\begin{array}{cc} 0 & \alpha_2 \\ -\alpha_1 & 0 \end{array} \right) \left(\begin{array}{c} x_1 \\ x_2 \end{array} \right) = \alpha_2 P_{u^\perp} x - \alpha_1 P_{\mathbb{R}u} x.
\]
Lemma

Suppose that \(\dim(X) \geq 2 \) and that \(E : X \to X \) is a semi-skew operator. Then:

- \(E \) is linear, continuous and invertible.
- There does not exist any upper semicontinuous \(f : X \to (-\infty, \infty] \) which satisfies \(f(0) \in \mathbb{R} \) and solves the equation \(f(x) = f^*(Ex), x \in X \).

Proposition

Suppose that \(\dim(X) \geq 2 \) and that \(G : X \to X \) is a semi-skew operator. Then (1) does not have any solution \(C \subseteq X \) which is bounded and contains 0 in its interior.
Lemma

Suppose that $\dim(X) \geq 2$ and that $E : X \to X$ is a semi-skew operator. Then:

1. E is linear, continuous and invertible.
2. There does not exist any upper semicontinuous $f : X \to (-\infty, \infty]$ which satisfies $f(0) \in \mathbb{R}$ and solves the equation $f(x) = f^*(Ex)$, $x \in X$.

Proposition

Suppose that $\dim(X) \geq 2$ and that $G : X \to X$ is a semi-skew operator. Then (1) does not have any solution $C \subseteq X$ which is bounded and contains 0 in its interior.
Lemma

Suppose that $\dim(X) \geq 2$ and that $E : X \to X$ is a semi-skew operator. Then:

- E is linear, continuous and invertible.
Lemma

Suppose that $\dim(X) \geq 2$ and that $E : X \to X$ is a semi-skew operator. Then:

- E is linear, continuous and invertible.
- There does not exist any upper semicontinuous $f : X \to (-\infty, \infty]$ which satisfies $f(0) \in \mathbb{R}$ and solves the equation

$$f(x) = f^*(Ex), \quad x \in X.$$
Lemma

Suppose that $\dim(X) \geq 2$ and that $E : X \to X$ is a semi-skew operator. Then:

- E is linear, continuous and invertible.
- **There does not exist** any upper semicontinuous $f : X \to (-\infty, \infty]$ which satisfies $f(0) \in \mathbb{R}$ and solves the equation

 \[f(x) = f^*(Ex), \quad x \in X. \]

Proposition

Suppose that $\dim(X) \geq 2$ and that $G : X \to X$ is a semi-skew operator. Then (1) does not have any solution $C \subseteq X$ which is bounded and contains 0 in its interior.
P.S. The slides are planned to be uploaded online in the not so distant future (within 3 months) to

http://w3.impa.br/~dream/talks