The Geometric Stability of Voronoi Diagrams with Respect to Small Changes of the Sites

Daniel Reem

Department of Mathematics, University of Haifa
31905 Haifa, ISRAEL

E-mail: dream@math.haifa.ac.il

http://www.technion.ac.il/~dream

June 14, 2011

SoCG 2011, Paris, France
Voronoi diagrams: a short reminder

A decomposition of a given space X into cells induced by given sites and a given distance function d. To each site P_k one associates the subset (cell) R_k defined as follows:

$$R_k = \{ x \in X : d(x, P_k) \leq d(x, P_j) \forall j \neq k \}.$$
Voronoi diagrams: a short reminder

- A decomposition of a given space X into cells induced by given sites and a given distance function d.
Voronoi diagrams: a short reminder

- A decomposition of a given space X into cells induced by given sites and a given distance function d.
- To each site P_k one associates the subset (cell) R_k defined as follows:

\[R_k = \{ x \in X : d(x, P_k) \leq d(x, P_j) \forall j \neq k \} \]
Voronoi diagrams: a short reminder

- A decomposition of a given space X into cells induced by given sites and a given distance function d.

- To each site P_k one associates the subset (cell) R_k defined as follows:

$$R_k = \{ x \in X : d(x, P_k) \leq d(x, P_j) \quad \forall j \neq k \}.$$
Voronoi diagrams: a short reminder

- A decomposition of a given space X into cells induced by given sites and a given distance function d.
- To each site P_k one associates the subset (cell) R_k defined as follows:

$$R_k = \{x \in X : d(x, P_k) \leq d(x, P_j) \quad \forall j \neq k\}.$$

- VD appear in a huge number of places in science and technology and have diverse applications.
Voronoi diagrams: a short reminder

- A decomposition of a given space X into cells induced by given sites and a given distance function d.

- To each site P_k one associates the subset (cell) R_k defined as follows:

 $$R_k = \{ x \in X : d(x, P_k) \leq d(x, P_j) \quad \forall j \neq k \}.$$

- VD appear in a huge number of places in science and technology and have diverse applications.

- They have been the subject of extensive investigation during the last 40 years.
A question

Consider the following question:

Does a small change of the sites, e.g., of their position or shape, yield a small change in the corresponding Voronoi cells?
Consider the following question:
A question

Consider the following question:

Question

Does a small change of the sites, e.g., of their position or shape, yield a small change in the corresponding Voronoi cells?
A question (cont.)

A natural and fundamental question because in practice, no matter which algorithm is being used for computing the cells, one approximates the sites for various reasons: lack of exact information about them, inevitable numerical errors in their representation, for simplification purposes, and so on: imprecision is inherent.

But are we sure that the resulting Voronoi cells approximate well the real (ideal) ones?
A question (cont.)

A natural and fundamental question because in practice, no matter which algorithm is being used for computing the cells, one approximates the sites for various reasons:

- Lack of exact information about them
- Inevitable numerical errors in their representation
- For simplification purposes

But are we sure that the resulting Voronoi cells approximate well the real (ideal) ones?
A question (cont.)

A natural and fundamental question because in practice, no matter which algorithm is being used for computing the cells, one approximates the sites for various reasons:

- lack of exact information about them
A question (cont.)

A natural and fundamental question because in practice, no matter which algorithm is being used for computing the cells, one approximates the sites for various reasons:

- lack of exact information about them
- inevitable numerical errors in their representation
A question (cont.)

A natural and fundamental question because in practice, no matter which algorithm is being used for computing the cells, one approximates the sites for various reasons:

- lack of exact information about them
- inevitable numerical errors in their representation
- for simplification purposes

But are we sure that the resulting Voronoi cells approximate well the real (ideal) ones?
A question (cont.)

A natural and fundamental question because in practice, no matter which algorithm is being used for computing the cells, one approximates the sites for various reasons:

- lack of exact information about them
- inevitable numerical errors in their representation
- for simplification purposes
- and so on: **imprecision is inherent**
A question (cont.)

A natural and fundamental question because in practice, no matter which algorithm is being used for computing the cells, one approximates the sites for various reasons:

- lack of exact information about them
- inevitable numerical errors in their representation
- for simplification purposes
- and so on: imprecision is inherent

But are we sure that the resulting Voronoi cells approximate well the real (ideal) ones?
Example
Example

Figure: 10 ideal shopping centers or post offices a flat city.
Example

Figure: 10 ideal shopping centers or post offices a flat city.

Figure: A more realistic situation.
Does this example describe a general phenomenon?

More precisely, does a small change in the position or the shape of the sites yield a small change in the shapes of the Voronoi cells?
Does this example describe a general phenomenon?

More precisely,
Does this example describe a general phenomenon?

More precisely,

Does a small change in the position or the shape of the sites yield a small change in the shapes of the Voronoi cells?
What is known about this phenomenon?

Surprisingly, almost nothing!

The discussion in the literature is:
- very brief
- intuitive and without proofs
- limited to very few places
- restricted (low) dimensional Euclidean spaces, mainly point sites

However, there is some discussion in a few places on the combinatorial stability of VD for moving point sites in finite dimensional Euclidean spaces:
- not stable in general, but is stable most of the time.
What is known about this phenomenon?

Surprisingly, almost nothing!
What is known about this phenomenon?

Surprisingly, almost nothing!

The discussion in the literature is:

- very brief
- intuitive and without proofs
- limited to very few places
- restricted to low-dimensional Euclidean spaces, mainly point sites

However, there is some discussion in a few places on the combinatorial stability of Voronoi diagrams for moving point sites in finite dimensional Euclidean spaces:

- not stable in general, but stable most of the time.
What is known about this phenomenon?

Surprisingly, almost nothing!

The discussion in the literature is:

- very brief
What is known about this phenomenon?

Surprisingly, almost nothing!

The discussion in the literature is:

- very brief
- intuitive and without proofs
What is known about this phenomenon?

Surprisingly, almost nothing!

The discussion in the literature is:

- very brief
- intuitive and without proofs
- limited to very few places
What is known about this phenomenon?

Surprisingly, almost nothing!

The discussion in the literature is:

- very brief
- intuitive and without proofs
- limited to very few places
- restricted ((low) dimensional Euclidean spaces, mainly point sites)
What is known about this phenomenon?

Surprisingly, almost nothing!

The discussion in the literature is:

- very brief
- intuitive and without proofs
- limited to very few places
- restricted ((low) dimensional Euclidean spaces, mainly point sites)

However, there is some discussion in a few places on the combinatorial stability of VD for moving point sites in finite dimensional Euclidean spaces:
What is known about this phenomenon?

Surprisingly, almost nothing!

The discussion in the literature is:

- very brief
- intuitive and without proofs
- limited to very few places
- restricted ((low) dimensional Euclidean spaces, mainly point sites)

However, there is some discussion in a few places on the combinatorial stability of VD for moving point sites in finite dimensional Euclidean spaces:
not stable in general, but is stable most of the time.
The setting of the main result

- A closed and convex subset X of a uniformly convex normed space (examples of such spaces: Euclidean spaces, ℓ^p spaces, $L^p(\Omega)$ spaces, $1 < p < \infty$);
- There is a positive lower bound on the distance between the sites;
- A certain boundedness condition holds, e.g., when X is bounded or when the sites form a (distorted) lattice;
- The distance to each site is attained;
- The changes are measured w.r.t. the Hausdorff distance D.

Notation:
- P'_k is the perturbed site corresponding to P_k;
- R'_k is the perturbed cell corresponding to R_k.
The setting of the main result

- a closed and convex subset X of a uniformly convex normed space
 (examples of such spaces: Euclidean spaces, ℓ_p spaces, $L_p(\Omega)$ spaces, $1 < p < \infty$);
The setting of the main result

- a closed and convex subset X of a uniformly convex normed space (examples of such spaces: Euclidean spaces, ℓ_p spaces, $L_p(\Omega)$ spaces, $1 < p < \infty$);

- there is a positive lower bound on the distance between the sites;
The setting of the main result

- a closed and convex subset X of a uniformly convex normed space (examples of such spaces: Euclidean spaces, ℓ_p spaces, $L_p(\Omega)$ spaces, $1 < p < \infty$);

- there is a positive lower bound on the distance between the sites;

- a certain boundedness condition holds, e.g., when X is bounded or when the sites form a (distorted) lattice;
The setting of the main result

- a closed and convex subset X of a uniformly convex normed space (examples of such spaces: Euclidean spaces, ℓ_p spaces, $L_p(\Omega)$ spaces, $1 < p < \infty$);
- there is a positive lower bound on the distance between the sites;
- a certain boundedness condition holds, e.g., when X is bounded or when the sites form a (distorted) lattice;
- the distance to each site is attained;
The setting of the main result

- a closed and convex subset X of a uniformly convex normed space (examples of such spaces: Euclidean spaces, ℓ_p spaces, $L_p(\Omega)$ spaces, $1 < p < \infty$);
- there is a positive lower bound on the distance between the sites;
- a certain boundedness condition holds, e.g., when X is bounded or when the sites form a (distorted) lattice;
- the distance to each site is attained;
- the changes are measured w.r.t the Hausdorff distance D;
The setting of the main result

- a closed and convex subset X of a uniformly convex normed space (examples of such spaces: Euclidean spaces, ℓ_p spaces, $L_p(\Omega)$ spaces, $1 < p < \infty$);

- there is a positive lower bound on the distance between the sites;

- a certain boundedness condition holds, e.g., when X is bounded or when the sites form a (distorted) lattice;

- the distance to each site is attained;

- the changes are measured w.r.t the Hausdorff distance D;

Notation:

- P'_k is the perturbed site corresponding to P_k;
- R'_k is the perturbed cell corresponding to R_k.
The setting of the main result

- a closed and convex subset X of a uniformly convex normed space (examples of such spaces: Euclidean spaces, ℓ_p spaces, $L_p(\Omega)$ spaces, $1 < p < \infty$);

- there is a positive lower bound on the distance between the sites;

- a certain boundedness condition holds, e.g., when X is bounded or when the sites form a (distorted) lattice;

- the distance to each site is attained;

- the changes are measured w.r.t the Hausdorff distance D;

Notation:

- P'_k is the perturbed site corresponding to P_k;
The setting of the main result

- a closed and convex subset X of a uniformly convex normed space (examples of such spaces: Euclidean spaces, ℓ_p spaces, $L_p(\Omega)$ spaces, $1 < p < \infty$);
- there is a positive lower bound on the distance between the sites;
- a certain boundedness condition holds, e.g., when X is bounded or when the sites form a (distorted) lattice;
- the distance to each site is attained;
- the changes are measured w.r.t the Hausdorff distance D;

Notation:

- P'_k is the perturbed site corresponding to P_k;
- R'_k is the perturbed cell corresponding to R_k;
The main result

Under this setting, for any $\epsilon > 0$ there exists $\Delta > 0$ such that for each $k \in K$, if $D(P_k, P'_k) < \Delta$, then $D(R_k, R'_k) < \epsilon$.

Moreover, explicit bounds on the changes are given. There are counterexamples which show that the assumptions imposed above are crucial.
The main result

Theorem

*Under this setting, for any $\epsilon > 0$ there exists $\Delta > 0$ such that for each $k \in K$, if $D(P_k, P'_k) < \Delta$, then $D(R_k, R'_k) < \epsilon$.***
The main result

Theorem

Under this setting, for any $\epsilon > 0$ there exists $\Delta > 0$ such that for each $k \in K$, if $D(P_k, P'_k) < \Delta$, then $D(R_k, R'_k) < \epsilon$. Moreover, explicit bounds on the changes are given.
The main result

Theorem

Under this setting, for any $\epsilon > 0$ there exists $\Delta > 0$ such that for each $k \in K$, if $D(P_k, P'_k) < \Delta$, then $D(R_k, R'_k) < \epsilon$. Moreover, explicit bounds on the changes are given. There are counterexamples which show that the assumptions imposed above are crucial.
Clarifications

The Hausdorff distance indeed measures changes between shapes (see the paper for mathematical+physical motivations).

Infinitely many sites of a general form are allowed. The space can be infinite dimensional: no curse of dimensionality (pure geometric result).

In general, $\Delta = O(\epsilon^2)$; if the sites are strictly inside X, then $\Delta = O(\epsilon)$.

The constants inside O are explicit and independent of the dimension.
Clarifications

- The Hausdorff distance indeed measures changes between shapes (see the paper for mathematical+physical motivations).
Clarifications

- The Hausdorff distance indeed measures changes between shapes (see the paper for mathematical + physical motivations).
- Infinitely many sites of a general form are allowed.
Clarifications

- The Hausdorff distance indeed measures changes between shapes (see the paper for mathematical + physical motivations).
- Infinitely many sites of a general form are allowed.
- The space can be infinite dimensional: **no curse of dimensionality** (pure geometric result).
Clarifications

- The Hausdorff distance indeed measures changes between shapes (see the paper for mathematical + physical motivations).
- Infinitely many sites of a general form are allowed.
- The space can be infinite dimensional: no curse of dimensionality (pure geometric result).
- In general, $\Delta = O(\epsilon^2)$;
Clarifications

- The Hausdorff distance indeed measures changes between shapes (see the paper for mathematical+physical motivations).
- Infinitely many sites of a general form are allowed.
- The space can be infinite dimensional: no curse of dimensionality (pure geometric result).
- In general, $\Delta = O(\epsilon^2)$; If the sites are strictly inside X, then $\Delta = O(\epsilon)$.
Clarifications

- The Hausdorff distance indeed measures changes between shapes (see the paper for mathematical+physical motivations).

- Infinitely many sites of a general form are allowed.

- The space can be infinite dimensional: no curse of dimensionality (pure geometric result).

- In general, $\Delta = O(\epsilon^2)$;
 If the sites are strictly inside X, then $\Delta = O(\epsilon)$.

- The constants inside O are explicit and independent of the dimension.
Illustration
Figure: 5 sites in a square in (\mathbb{R}^2, ℓ_p), $p = 3.14159$.
Illustration

Figure: 5 sites in a square in (\mathbb{R}^2, ℓ_p), $p = 3.14159$.

Figure: The sites have been slightly perturbed; the cells have been slightly perturbed.
The relevance of the main result
The relevance of the main result

Real-world and theoretical Examples
The relevance of the main result

Real-world and theoretical Examples

- **Robot motion, collision detection**: sites = static/dynamic obstacles

Solid state physics:
sites = atoms in an infinite and unbounded lattice (crystal)

Signal processing:
sites = (distorted) signals;

 - **Discrete signal**: in a (very) high dimensional space.
 - **Continuous signal**: in the infinite dimensional space L^2.
The relevance of the main result

Real-world and theoretical Examples

- **Robot motion, collision detection:** sites=static/dynamic obstacles
- **Solid state physics:** sites=atoms in an infinite and unbounded lattice (crystal)
The relevance of the main result

Real-world and theoretical Examples

- **Robot motion, collision detection**: sites=static/dynamic obstacles
- **Solid state physics**: sites=atoms in an *infinite and unbounded* lattice (crystal)
- **Signal processing**: sites=(distorted) signals;
The relevance of the main result

Real-world and theoretical Examples

- **Robot motion, collision detection**: sites = static/dynamic obstacles
- **Solid state physics**: sites = atoms in an **infinite and unbounded** lattice (crystal)
- **Signal processing**: sites = (distorted) signals;
 - discrete signal: in a (very) **high dimensional** space.
The relevance of the main result

Real-world and theoretical Examples

- **Robot motion, collision detection**: sites = static/dynamic obstacles

- **Solid state physics**: sites = atoms in an infinite and unbounded lattice (crystal)

- **Signal processing**: sites = (distorted) signals;
 - discrete signal: in a (very) high dimensional space.
 - continuous signal: in the infinite dimensional space L^2;
Computer graphics: sites = parts/features in/of an image
Numerical simulations: sites = parts in a (continuously changing) simulated phenomenon
Molecular biology: sites (points/spheres) = atoms/amino acids
Computational geometry: existence of zone diagrams
Computational geometry: analyzing (approximate) geometric algorithms
And so on.
The relevance of the main result (Cont.)

- **Computer graphics**: sites = parts/features in/of an image
Computer graphics: sites = parts/features in/of an image

Numerical simulations: sites = parts in a (continuously changing) simulated phenomenon
The relevance of the main result (Cont.)

- **Computer graphics**: sites = parts/features in/of an image
- **Numerical simulations**: sites = parts in a (continuously changing) simulated phenomenon
- **Molecular biology**: sites (points/spheres) = atoms/amino acids
The relevance of the main result (Cont.)

- **Computer graphics:** sites = parts/features in/of an image
- **Numerical simulations:** sites = parts in a (continuously changing) simulated phenomenon
- **Molecular biology:** sites (points/spheres) = atoms/amino acids
- **Computational geometry:** existence of zone diagrams
The relevance of the main result (Cont.)

- **Computer graphics:** sites = parts/features in/of an image
- **Numerical simulations:** sites = parts in a (continuously changing) simulated phenomenon
- **Molecular biology:** sites (points/spheres) = atoms/amino acids
- **Computational geometry:** existence of zone diagrams
- **Computational geometry:** analyzing (approximate) geometric algorithms
The relevance of the main result (Cont.)

- **Computer graphics:** sites = parts/features in/of an image
- **Numerical simulations:** sites = parts in a (continuously changing) simulated phenomenon
- **Molecular biology:** sites (points/spheres) = atoms/amino acids
- **Computational geometry:** existence of zone diagrams
- **Computational geometry:** analyzing (approximate) geometric algorithms
- And so on.
Counterexamples

Figure: Four sites in a square in $(\mathbb{R}^2, \ell_\infty)$. The cell of $P_1 = \{(0,0)\}$ is displayed.

Figure: Now either $P_1 = \{(\beta, \beta)\}$, $\beta > 0$ arbitrary small, or P_4 (the lower site) is a small square.
Counterexamples

Figure: Four sites in a square in \((\mathbb{R}^2, \ell_\infty)\). The cell of \(P_1 = \{(0, 0)\}\) is displayed.
Counterexamples

Figure: Four sites in a square in \((\mathbb{R}^2, \ell_\infty)\). The cell of \(P_1 = \{(0, 0)\}\) is displayed.

Figure: Now either \(P_1 = \{(\beta, \beta)\}, \beta > 0\) arbitrary small, or \(P_4\) (the lower site) is a small square.
Counterexamples (Cont.)

The full diagram of Figure 5.

Each cell is represented as a union of rays. Note the large intersection between cells 1, 2, and 3.

The full diagram of Figure 6 after P_1 has moved. Cells 2, 3 have been (significantly) changed too.
Counterexamples (Cont.)

Figure: The full diagram of Figure 5. Each cell is represented as a union of rays. Note the large intersection between cells 1, 2, and 3.
Counterexamples (Cont.)

Figure: The full diagram of Figure 5. Each cell is represented as a union of rays. Note the large intersection between cells 1, 2, and 3.

Figure: The full diagram of Figure 6 after P_1 has moved. Cells 2, 3 have been (significantly) changed too.
Some aspects related to the proof

Long and technical (unfortunately)

Based on a non-standard approach

Some ingredients in the proof:

- A new representation theorem for the cells
- New geometric estimates
- The forgotten strong triangle inequality of James Clarkson
Some aspects related to the proof

- Long and technical (unfortunately)

- A new representation theorem for the cells
- New geometric estimates
- The forgotten strong triangle inequality of James Clarkson
Some aspects related to the proof

- Long and technical (unfortunately)
- Based on a non-standard approach
Some aspects related to the proof

- Long and technical (unfortunately)
- Based on a non-standard approach
- Some ingredients in the proof:
Some aspects related to the proof

- Long and technical (unfortunately)
- Based on a non-standard approach
- Some ingredients in the proof:
 - A new representation theorem for the cells

Daniel Reem (University of Haifa)
Some aspects related to the proof

- Long and technical (unfortunately)
- Based on a non-standard approach
- Some ingredients in the proof:
 - A new representation theorem for the cells
 - New geometric estimates
Some aspects related to the proof

- Long and technical (unfortunately)
- Based on a non-standard approach
- Some ingredients in the proof:
 - A new representation theorem for the cells
 - New geometric estimates
 - The forgotten strong triangle inequality of James Clarkson
Other approaches for proving the result?

The main difficulty in using familiar approaches is the generality of the result. Problems may occur with:

- Euclidean arguments (norm=more general);
- compactness arguments (when dim=infinite);
- sites of a general+complicated form;
- lower envelopes (complicated cells with non-algebraic boundaries);
- possible infinite accumulated error due to ∞ sites or ∞ dimension;

and so on.

Daniel Reem (University of Haifa)

The geometric stability of Voronoi diagrams

June 14, 2011 17 / 19
Other approaches for proving the result?

The main difficulty in using familiar approaches is the generality of the result. Problems may occur with:

- Euclidean arguments (norm=more general);
- Compactness arguments (when dim=infinite);
- Sites of a general+complicated form;
- Lower envelopes (complicated cells with non-algebraic boundaries);
- Possible infinite accumulated error due to ∞ sites or ∞ dimension;

and so on;
Other approaches for proving the result?

The main difficulty in using familiar approaches is the generality of the result. Problems may occur with:

- Euclidean arguments (norm=more general);
Other approaches for proving the result?

The main difficulty in using familiar approaches is the generality of the result. Problems may occur with:

- Euclidean arguments (norm=more general);
- compactness arguments (when dim=infinitie);
Other approaches for proving the result?

The main difficulty in using familiar approaches is the generality of the result. Problems may occur with:

- Euclidean arguments (norm=more general);
- compactness arguments (when dim=∞);
- sites of a general+complicated form;
Other approaches for proving the result?

The main difficulty in using familiar approaches is the generality of the result. Problems may occur with:

- Euclidean arguments (norm=more general);
- compactness arguments (when dim=infinite);
- sites of a general+complicated form;
- lower envelopes (complicated cells with non-algebraic boundaries);
Other approaches for proving the result?

The main difficulty in using familiar approaches is the generality of the result. Problems may occur with:

- Euclidean arguments (norm=more general);
- compactness arguments (when dim=infinite);
- sites of a general+complicated form;
- lower envelopes (complicated cells with non-algebraic boundaries);
- possible infinite accumulated error due to ∞ sites or ∞ dimension;
Other approaches for proving the result?

The main difficulty in using familiar approaches is the generality of the result. Problems may occur with:

- Euclidean arguments (norm=more general);
- compactness arguments (when dim=infinte);
- sites of a general+complicated form;
- lower envelopes (complicated cells with non-algebraic boundaries);
- possible infinite accumulated error due to ∞ sites or ∞ dimension;
- and so on;
Other approaches? (Cont.)

And if we restrict ourselves to a more concrete setting?

Open Problem

To use a different approach for proving the result and obtaining the explicit bounds ($\Delta = O(\epsilon)$, etc.) in specific but important settings: $\dim = 2$ and 3 distance = Euclidean Sites = points, discs, balls

Such a proof may illuminate and simplify the current one in these settings and may also improve the bounds.
Other approaches? (Cont.)

And if we restrict ourselves to a more concrete setting?
Other approaches? (Cont.)

And if we restrict ourselves to a more concrete setting?

Open Problem

To use a different approach for proving the result and obtaining the explicit bounds ($\Delta = O(\epsilon)$, etc.) in specific but important settings:
Other approaches? (Cont.)

And if we restrict ourselves to a more concrete setting?

Open Problem

To use a different approach for proving the result and obtaining the explicit bounds ($\Delta = O(\epsilon)$, etc.) in specific but important settings:

- dim $= 2$ and 3
Other approaches? (Cont.)

And if we restrict ourselves to a more concrete setting?

Open Problem
To use a different approach for proving the result and obtaining the explicit bounds ($\Delta = O(\epsilon)$, etc.) in specific but important settings:

- $\text{dim} = 2$ and 3
- $\text{distance} = \text{Euclidean}$
Other approaches? (Cont.)

And if we restrict ourselves to a more concrete setting?

Open Problem

To use a different approach for proving the result and obtaining the explicit bounds ($\Delta = O(\epsilon)$, etc.) in specific but important settings:

- $\text{dim} = 2$ and 3
- $\text{distance} = \text{Euclidean}$
- $\text{Sites} = \text{points, discs, balls}$
Other approaches? (Cont.)

And if we restrict ourselves to a more concrete setting?

Open Problem

To use a different approach for proving the result and obtaining the explicit bounds ($\Delta = O(\epsilon)$, etc.) in specific but important settings:

- $\text{dim} = 2$ and 3
- $\text{distance} = \text{Euclidean}$
- $\text{Sites} = \text{points, discs, balls}$

Such a proof may illuminate and simplify the current one in these settings and may also improve the bounds.
The End