GRADIENTS IN SVG [SVG, 2011]
A color ramp is a function c

$$c : [0, 1] \rightarrow \text{sRGBA}$$

that maps the interval $[0, 1]$ to colors with transparency
A color ramp is a function c

$$c: [0, 1] \rightarrow \text{sRGBA}$$

that maps the interval $[0, 1]$ to colors with transparency

Defined by a list of n stops

$$(t_i, c_i) \in [0, 1] \times \text{sRGBA}, \quad \text{with} \quad i \in \{1, \ldots, n\}, \quad t_i < t_{i+1}$$
A color ramp is a function c

$$c: [0, 1] \rightarrow \text{sRGBA}$$

that maps the interval $[0, 1]$ to colors with transparency

Defined by a list of n stops

$$(t_i, c_i) \in [0, 1] \times \text{sRGBA}, \quad \text{with} \quad i \in \{1, \ldots, n\}, \quad t_i < t_{i+1}$$

c(t) is linear by parts

$$c(t) = \frac{(t_{i+1} - t) c_i + (t - t_i) c_{i+1}}{t_{i+1} - t_i}, \quad t_i \leq t < t_{i+1}$$
A wrapping function s

$$s: \mathbb{R} \rightarrow [0, 1]$$

maps a real number to the domain of the color ramp
Wrapping function (or spread method)

A wrapping function s

$$s: \mathbb{R} \rightarrow [0, 1]$$

maps a real number to the domain of the color ramp

E.g., *pad* (or *clamp*), *repeat* (or *wrap*), and *reflect* (or *mirror*)

$$pad(t) = \min(1, \max(0, t))$$
Wrapping function (or spread method)

A wrapping function s

$$s : \mathbb{R} \rightarrow [0, 1]$$

maps a real number to the domain of the color ramp

E.g., *pad* (or *clamp*), *repeat* (or *wrap*), and *reflect* (or *mirror*)

$$\text{pad}(t) = \min (1, \max (0, t))$$

$$\text{repeat}(t) = t - \lfloor t \rfloor$$
A wrapping function s

$$s: \mathbb{R} \rightarrow [0, 1]$$

maps a real number to the domain of the color ramp

E.g., pad (or clamp), repeat (or wrap), and reflect (or mirror)

$$\text{pad}(t) = \min(1, \max(0, t))$$
$$\text{repeat}(t) = t - \lfloor t \rfloor$$
$$\text{reflect}(t) = 2\left|\frac{1}{2} t - \lfloor \frac{1}{2} t + \frac{1}{2} \rfloor\right|$$
A linear gradient mapping is a function ℓ

$$\ell : \mathbb{R}^2 \rightarrow \mathbb{R}$$

parametrized by 2 control points p_1, p_2
A linear gradient mapping is a function ℓ

$$\ell : \mathbb{R}^2 \rightarrow \mathbb{R}$$

parametrized by 2 control points p_1, p_2
A linear gradient mapping is a function ℓ

$$\ell: \mathbb{R}^2 \rightarrow \mathbb{R}$$

parametrized by 2 control points p_1, p_2

It computes the normalized projected length of $p - p_1$ into $p_2 - p_1$

$$\ell(p) = \frac{\langle p - p_1, p_2 - p_1 \rangle}{\langle p_2 - p_1, p_2 - p_1 \rangle}$$
A radial gradient mapping is a function r

$$r : \mathbb{R}^2 \rightarrow \mathbb{R}$$

parametrized by a center c, a radius r, and a focal point f
A radial gradient mapping is a function r

$$r : \mathbb{R}^2 \rightarrow \mathbb{R}$$

parametrized by a center c, a radius r, and a focal point f
A radial gradient mapping is a function r

$$r : \mathbb{R}^2 \rightarrow \mathbb{R}$$

parametrized by a center c, a radius r, and a focal point f

It computes the length ratio of from point p to f and q to f

$$r(p) = \frac{\|p - f\|}{\|q - f\|}$$

where q is the intersection between the ray from focal point f to point p and the circle centered at c with radius r
Every shape includes a transformation T_o that maps it from *object coordinates* (where the object is defined) to *scene coordinates* (where the object is placed on a scene).
Every shape includes a transformation T_o that maps it from *object coordinates* (where the object is defined) to *scene coordinates* (where the object is placed on a scene).

Similarly, every paint includes a transformation T_p that maps points from *paint coordinates* (where the color is computed) to *scene coordinates* (where the color is painted).
Every shape includes a transformation T_o that maps it from object coordinates (where the object is defined) to scene coordinates (where the object is placed on a scene).

Similarly, every paint includes a transformation T_p that maps points from paint coordinates (where the color is computed) to scene coordinates (where the color is painted).

If you want to apply a transformation T to a shape and want its paint to move with it, simply compose

\[T'_o = T \circ T_o \]
\[T'_p = T \circ T_p \]
A linear gradient is a function

$$\mathbb{R}^2 \rightarrow \text{sRGBA}$$

formed by the composition of a paint transform T_p, a linear gradient mapping ℓ, a wrapping function s, and a color ramp c

$$p \mapsto c\left(s(\ell(T_p^{-1} p))\right)$$
A linear gradient is a function

$$\mathbb{R}^2 \rightarrow \text{sRGBA}$$

formed by the composition of a paint transform T_p, a linear gradient mapping ℓ, a wrapping function s, and a color ramp c

$$p \mapsto c\left(s(\ell(T_p^{-1} p))\right)$$

Show in Inkscape
EXAMPLES
A radial gradient is a function

\[\mathbb{R}^2 \rightarrow \text{sRGBA} \]

formed by the composition of a paint transform \(T_p \), a radial gradient mapping \(r \), a wrapping function \(s \), and a color ramp \(c \)

\[p \mapsto c \left(s \left(r \left(T_p^{-1} p \right) \right) \right) \]
A radial gradient is a function

\[\mathbb{R}^2 \to \text{sRGBA} \]

formed by the composition of a paint transform \(T_p \), a radial gradient mapping \(r \), a wrapping function \(s \), and a color ramp \(c \)

\[p \mapsto c\left(s\left(r\left(T_p^{-1} p)\right)\right) \]

Show in Inkscape
EXAMPLES
Evaluating gradient paints

How to efficiently evaluate a ramp

• Linear search, binary search, uniform sampling
Evaluating gradient paints

How to efficiently evaluate a ramp
 • Linear search, binary search, uniform sampling

How to efficiently evaluate linear and radial mappings?
 • How many parameters are really needed?
Gradients in PostScript and PDF
Type 1: Function-dictionary-based shading
 • Basically texture mapping
 • Show EPS file
 • Will discuss in following classes
SHADING TYPES

Type 1: Function-dictionary-based shading
 - Basically texture mapping
 - Show EPS file
 - Will discuss in following classes

Type 2: Axial shading
 - Same as linear gradient
 - Show EPS file
Type 3: Radial shading
 • *Not* the same radial gradient
Type 3: Radial shading

- *Not* the same radial gradient
- Define $\gamma(p, r)$ to be the circle centered at p with radius r
Type 3: Radial shading

- *Not* the same radial gradient
- Define $\gamma(p, r)$ to be the circle centered at p with radius r
- Inputs are centers and radii for 2 circles $(p_1, r_1), (p_2, r_2)$
Type 3: Radial shading

\begin{itemize}
 \item \textit{Not} the same radial gradient
 \item Define \(\gamma(p, r) \) to be the circle centered at \(p \) with radius \(r \)
 \item Inputs are centers and radii for 2 circles \((p_1, r_1), (p_2, r_2)\)
 \item Maps the “interpolated” circle to the color from a ramp \(c \)
 \[\gamma((1 - t)(p_1, r_1) + t(p_2, r_2)) \mapsto c(t) \]
\end{itemize}
Type 3: Radial shading

- Not the same radial gradient
- Define $\gamma(p, r)$ to be the circle centered at p with radius r
- Inputs are centers and radii for 2 circles $(p_1, r_1), (p_2, r_2)$
- Maps the “interpolated” circle to the color from a ramp c

$$\gamma\left((1 - t)(p_1, r_1) + t(p_2, r_2)\right) \mapsto c(t)$$

- Show EPS file
Type 4: Free-form Gouraud-shaded triangle mesh
- Inputs are 3 vertices with colors \((p_1, c_1), (p_2, c_2), (p_3, c_3)\)
Type 4: Free-form Gouraud-shaded triangle mesh

- Inputs are 3 vertices with colors \((p_1, c_1), (p_2, c_2), (p_3, c_3)\)
- Maps convex combination of points to same combination of colors

- Triangles can be independent, strips, or fans

- Show EPS file and PDF file

Type 5: Lattice-form Gouraud-shaded triangle mesh

- Same, but for a “regular” grid of triangles
Type 4: Free-form Gouraud-shaded triangle mesh

- Inputs are 3 vertices with colors \((p_1, c_1), (p_2, c_2), (p_3, c_3)\)
- Maps convex combination of points to same combination of colors
- I.e., given \(0 < s, t < 1\), Gouraud maps

\[p(s, t) \mapsto c(s, t) \]

with

\[p(s, t) = sp_1 + tp_2 + (1 - s - t)p_3 \]
\[c(s, t) = sc_1 + tc_2 + (1 - s - t)c_3 \]
Shading types

Type 4: Free-form Gouraud-shaded triangle mesh
• Inputs are 3 vertices with colors \((p_1, c_1), (p_2, c_2), (p_3, c_3)\)
• Maps convex combination of points to same combination of colors
• I.e., given \(0 < s, t < 1\), Gouraud maps

\[
p(s, t) \mapsto c(s, t)
\]

with

\[
p(s, t) = sp_1 + tp_2 + (1 - s - t)p_3
\]
\[
c(s, t) = sc_1 + tc_2 + (1 - s - t)c_3
\]

• Triangles can be independent, strips, or fans
Type 4: Free-form Gouraud-shaded triangle mesh
• Inputs are 3 vertices with colors \((p_1, c_1), (p_2, c_2), (p_3, c_3)\)
• Maps convex combination of points to same combination of colors
• I.e., given \(0 < s, t < 1\), Gouraud maps
\[
p(s, t) \mapsto c(s, t)
\]
with
\[
p(s, t) = sp_1 + tp_2 + (1 - s - t)p_3
\]
\[
c(s, t) = sc_1 + tc_2 + (1 - s - t)c_3
\]
• Triangles can be independent, strips, or fans
• Show EPS file and PDF file
Shading types

Type 4: Free-form Gouraud-shaded triangle mesh

- Inputs are 3 vertices with colors \((p_1, c_1), (p_2, c_2), (p_3, c_3)\)
- Maps convex combination of points to same combination of colors
- I.e., given \(0 < s, t < 1\), Gouraud maps
 \[
 p(s, t) \mapsto c(s, t)
 \]
 with
 \[
 p(s, t) = s p_1 + t p_2 + (1 - s - t) p_3 \\
 c(s, t) = s c_1 + t c_2 + (1 - s - t) c_3
 \]
- Triangles can be independent, *strips*, or *fans*
- Show EPS file and PDF file

Type 5: Lattice-form Gouraud-shaded triangle mesh

- Same, but for a “regular” grid of triangles
EXAMPLES
Examples
Type 6: Coons patch mesh

- Each patch is defined by 4 connected cubic Bézier segments

\[h_0(s), \ h_1(s), \ v_0(t), \ \text{and} \ v_1(t) \]
Type 6: Coons patch mesh

- Each patch is defined by 4 connected cubic Bézier segments $h_0(s)$, $h_1(s)$, $v_0(t)$, and $v_1(t)$

- Curves are setup to share endpoints like such

 \[
 v_{00} = v_0(0) = h_0(0) \quad v_{01} = v_0(1) = h_1(0) \\
 v_{10} = v_1(0) = h_0(1) \quad v_{11} = v_1(1) = h_1(1)
 \]
Type 6: Coons patch mesh

- Each patch is defined by 4 connected cubic Bézier segments
 \[h_0(s), \ h_1(s), \ v_0(t), \ \text{and} \ v_1(t) \]
- Curves are setup to share endpoints like such
 \[v_{00} = v_0(0) = h_0(0) \quad v_{01} = v_0(1) = h_1(0) \]
 \[v_{10} = v_1(0) = h_0(1) \quad v_{11} = v_1(1) = h_1(1) \]
- Define \(h : [0, 1]^2 \to \mathbb{R}^2 \) to interpolate between curves \(h_0, h_1 \)
 \[h(s, t) = (1 - t) h_0(s) + t h_1(s) \]
Type 6: Coons patch mesh

- Each patch is defined by 4 connected cubic Bézier segments

\[h_0(s), \ h_1(s), \ v_0(t), \ \text{and} \ v_1(t) \]

- Curves are setup to share endpoints like such

\[
\begin{align*}
 v_{00} &= v_0(0) = h_0(0) & v_{01} &= v_0(1) = h_1(0) \\
 v_{10} &= v_1(0) = h_0(1) & v_{11} &= v_1(1) = h_1(1)
\end{align*}
\]

- Define \(h: [0, 1]^2 \to \mathbb{R}^2 \) to interpolate between curves \(h_0, h_1 \)

\[
h(s, t) = (1 - t) \ h_0(s) + \ t \ h_1(s)
\]

- Define \(v: [0, 1]^2 \to \mathbb{R}^2 \) to interpolate between \(v_0, v_1 \)

\[
v(s, t) = (1 - s) \ v_0(t) + \ s \ v_1(t)
\]
Type 6: Coons patch mesh

- Each patch is defined by 4 connected cubic Bézier segments
 \[h_0(s), \quad h_1(s), \quad v_0(t), \quad \text{and} \quad v_1(t) \]

- Curves are setup to share endpoints like such
 \[
 v_{00} = v_0(0) = h_0(0) \quad \quad \quad \quad \quad \quad \quad v_{01} = v_0(1) = h_1(0) \\
 v_{10} = v_1(0) = h_0(1) \quad \quad \quad \quad \quad \quad \quad v_{11} = v_1(1) = h_1(1)
 \]

- Define \(h : [0, 1]^2 \rightarrow \mathbb{R}^2 \) to interpolate between curves \(h_0, h_1 \)
 \[h(s, t) = (1 - t) h_0(s) + t h_1(s) \]

- Define \(v : [0, 1]^2 \rightarrow \mathbb{R}^2 \) to interpolate between \(v_0, v_1 \)
 \[v(s, t) = (1 - s) v_0(t) + s v_1(t) \]

- Note that \(v(s, t) \) and \(h(s, t) \) interpolate all shared vertices
Type 6: Coons patch mesh (continued)

- Define bilinear map $m : V^4 \times [0, 1]^2 \rightarrow \mathbb{R}^2$

$$m^{a,b}_{c,d}(s, t) = (1 - s)(1 - t) a + (1 - s) t b + s (1 - t) c + s t d$$
Type 6: Coons patch mesh (continued)

- Define bilinear map $m : V^4 \times [0, 1]^2 \rightarrow \mathbb{R}^2$

 $$m_{a,b}^{c,d}(s, t) = (1 - s)(1 - t) a + (1 - s) t b + s (1 - t) c + s t d$$

- The bilinear map $m_{v_00, v_01}^{v_{10}, v_{11}}(s, t)$ also interpolates the shared vertices
Type 6: Coons patch mesh (continued)

• Define bilinear map $m : V^4 \times [0, 1]^2 \rightarrow \mathbb{R}^2$

\[
m^{a,b}_{c,d}(s, t) = (1 - s)(1 - t) a + (1 - s) t b + s (1 - t) c + s t d
\]

• The bilinear map $m^{V_{00}, V_{01}}_{V_{10}, V_{11}}(s, t)$ also interpolates the shared vertices

• Therefore, so does

\[
p(s, t) = v(s, t) + h(s, t) - m^{V_{00}, V_{01}}_{V_{10}, V_{11}}(s, t)
\]
Type 6: Coons patch mesh (continued)

- Define bilinear map \(m: V^4 \times [0, 1]^2 \rightarrow \mathbb{R}^2 \)
 \[
 m_{c,d}^{a,b}(s, t) = (1 - s)(1 - t) a + (1 - s) t b + s (1 - t) c + s t d
 \]
- The bilinear map \(m_{v_{10},v_{11}}^{v_{00},v_{01}}(s, t) \) also interpolates the shared vertices
- Therefore, so does
 \[
 p(s, t) = v(s, t) + h(s, t) - m_{v_{10},v_{11}}^{v_{00},v_{01}}(s, t)
 \]
- Given colors \(c_{00}, c_{01}, c_{10}, \) and \(c_{11}, \) the patch maps
 \[
 p(s, t) \mapsto m_{c_{10},c_{11}}^{c_{00},c_{01}}(s, t)
 \]
Shading types

Type 6: Coons patch mesh (continued)

- Define bilinear map \(m : V^4 \times [0, 1]^2 \rightarrow \mathbb{R}^2 \)
 \[
m_{a,b}^{c,d}(s, t) = (1 - s)(1 - t) a + (1 - s) t b + s (1 - t) c + s t d
 \]
- The bilinear map \(m_{V_{00},V_{01}}^{V_{10},V_{11}}(s, t) \) also interpolates the shared vertices
- Therefore, so does
 \[
p(s, t) = v(s, t) + h(s, t) - m_{V_{10},V_{11}}^{V_{00},V_{01}}(s, t)
 \]
- Given colors \(c_{00}, c_{01}, c_{10}, \) and \(c_{11}, \) the patch maps
 \[
p(s, t) \mapsto m_{c_{10},c_{11}}^{c_{00},c_{01}}(s, t)
 \]
- Patches can be defined independently or connected by strips
Type 6: Coons patch mesh (continued)

- Define bilinear map $m : V^4 \times [0, 1]^2 \rightarrow \mathbb{R}^2$
 \[m_{a,b}^{c,d}(s,t) = (1 - s)(1 - t)a + (1 - s)t b + s(1 - t)c + std \]
- The bilinear map $m_{V_{00},V_{01}}^{V_{10},V_{11}}(s,t)$ also interpolates the shared vertices
- Therefore, so does
 \[p(s,t) = v(s,t) + h(s,t) - m_{V_{10},V_{11}}^{V_{00},V_{01}}(s,t) \]
- Given colors c_{00}, c_{01}, c_{10}, and c_{11}, the patch maps
 \[p(s,t) \mapsto m_{c_{10},c_{11}}^{c_{00},c_{01}}(s,t) \]
- Patches can be defined independently or connected by strips
- Show EPS file
Type 7: Tensor-product patch mesh

- This is just a generalization of Bézier curves to patches
Shading types

Type 7: Tensor-product patch mesh

- This is just a generalization of Bézier curves to patches
- Given control points \(p_{i,j} \), for \(i, j \in \{0, 1, 2, 3\} \), the tensor product is

\[
p(s, t) = \sum_{i=0}^{3} \sum_{j=0}^{3} p_{i,j} b_{i,3}(s) b_{j,3}(t)
\]

where \(b_{i,3}, b_{j,3} \) are the cubic Bernstein polynomials
Type 7: Tensor-product patch mesh

- This is just a generalization of Bézier curves to patches
- Given control points $p_{i,j}$, for $i, j \in \{0, 1, 2, 3\}$, the tensor product is

$$p(s, t) = \sum_{i=0}^{3} \sum_{j=0}^{3} p_{i,j} b_{i,3}(s) b_{j,3}(t)$$

where $b_{i,3}, b_{j,3}$ are the cubic Bernstein polynomials
- Given colors $c_{00}, c_{01}, c_{10}, c_{11}$, the patch maps

$$p(s, t) \mapsto m_{c_{00}, c_{01}}^{c_{10}, c_{11}}(s, t)$$
Type 7: Tensor-product patch mesh

- This is just a generalization of Bézier curves to patches
- Given control points \(p_{i,j} \), for \(i, j \in \{0, 1, 2, 3\} \), the tensor product is

\[
p(s, t) = \sum_{i=0}^{3} \sum_{j=0}^{3} p_{i,j} b_{i,3}(s) b_{j,3}(t)
\]

where \(b_{i,3}, b_{j,3} \) are the cubic Bernstein polynomials
- Given colors \(c_{00}, c_{01}, c_{10}, c_{11} \), the patch maps

\[
p(s, t) \mapsto m_{c_{00}, c_{01}}^{c_{10}, c_{11}}(s, t)
\]

- Patches can be defined independently or connected by strips
Shading types

Type 7: Tensor-product patch mesh

- This is just a generalization of Bézier curves to patches
- Given control points $p_{i,j}$, for $i, j \in \{0, 1, 2, 3\}$, the tensor product is

$$p(s, t) = \sum_{i=0}^{3} \sum_{j=0}^{3} p_{i,j} b_{i,3}(s) b_{j,3}(t)$$

where $b_{i,3}, b_{j,3}$ are the cubic Bernstein polynomials

- Given colors $c_{00}, c_{01}, c_{10}, c_{11}$, the patch maps

$$p(s, t) \mapsto m_{c_{00},c_{01}}^{c_{10},c_{11}}(s, t)$$

- Patches can be defined independently or connected by strips
- (Coons patch is a special case of tensor-product patch)
Shading types

Type 7: Tensor-product patch mesh

• This is just a generalization of Bézier curves to patches
• Given control points \(p_{i,j} \), for \(i, j \in \{0, 1, 2, 3\} \), the tensor product is

\[
p(s, t) = \sum_{i=0}^{3} \sum_{j=0}^{3} p_{i,j} b_{i,3}(s) b_{j,3}(t)
\]

where \(b_{i,3}, b_{j,3} \) are the cubic Bernstein polynomials

• Given colors \(c_{00}, c_{01}, c_{10}, c_{11} \), the patch maps

\[
p(s, t) \mapsto m_{c_{00}, c_{01}, c_{10}, c_{11}}(s, t)
\]

• Patches can be defined independently or connected by strips
• (Coons patch is a special case of tensor-product patch)
• Show EPS file
EXAMPLES
References

