A few exercises more

2D Computer Graphics: Diego Nehab
Summer 2019

Please try solving these exercises without looking their solutions up. The ones marked with one skull (💀) are harder. The ones marked with a skull and a question mark (💀?) may or may not be hard (Let me know.)

1. 💀 Is there a “color translation function” m that allows us to convert between the results of alpha blending in gamma and linear spaces? I.e., is there m such that, for all linear f, α_f and b, α_b, we have

$$
\gamma(m(f, \alpha_f) \oplus m(b, \alpha_b)) = \gamma(f, \alpha_f) \oplus \gamma(b, \alpha_b)
$$

(1)

Why would such a function be useful?

2. Find the formula for the curvature $\kappa(0)$ at the first endpoint of a rational Bézier curve segment with first control points p_0, p_1, p_2.

3. Show that inflections are invariant under projective transformations.

4. 💀? Given an integral quadratic Bézier curve with control points p_0, p_1, p_2, is there an implicit formula $f(p) = 0$ for the curve that is guaranteed to vanish at p_0 and p_2?

5. Show that a monotonic curve segment with no inflections cannot cross the line that connects its endpoints.

6. Show that the intersection of the tangents at the endpoints of a monotonic curve segment with no inflections happens inside the bounding box.

7. Consider a circle centered at c with radius r. Let f be a point in the interior of the circle. Let p be an arbitrary point distinct from f. Let q be the intersection between the circle and the ray from f through p. Find an expression for the ratio $r = |p - f|/|q - f|$. Now, given a value for r, describe the set of points p such that $r = |p - f|/|q - f|$.