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Optimized Quasi-Interpolators
for Image Reconstruction

Leonardo Sacht Diego Nehab

Abstract—We propose new quasi-interpolators for the continu-
ous reconstruction of sampled images, combining a narrowly-
supported piecewise-polynomial kernel and an efficient digital
filter. In other words, our quasi-interpolators fit within the
generalized sampling framework and are straightforward to use.
We go against standard practice and optimize for approximation
quality over the entire Nyquist range, rather than focusing
exclusively on the asymptotic behavior as the sample spacing goes
to zero. In contrast to previous work, we jointly optimize with
respect to all degrees of freedom available in both the kernel and
the digital filter. We consider linear, quadratic, and cubic schemes,
offering different trade-offs between quality and computational
cost. Experiments with compounded rotations and translations
over a range of input images confirm that, due to the additional
degrees of freedom and the more realistic objective function, our
new quasi-interpolators perform better than the state-of-the-art,
at a similar computational cost.

Index Terms—image reconstruction, quasi-interpolation.

I. INTRODUCTION

THE problem of obtaining an estimate for the value of a
function at an arbitrary point, given only a discrete set of

sampled values, has a long history in applied mathematics [23].
A variety of operations commonly performed on images, such
as rotations, translations, warps, and resolution change, require
this kind of resampling. Efficient, high-quality reconstruction
is therefore of fundamental importance in computer graphics
and image processing applications.

In this paper, we leverage results from the intersection of image
processing and approximation theory to optimize for a new
family of reconstruction schemes. As an example, figure 1
shows a standard benchmark used to evaluate reconstruction
quality. An input image is repeatedly translated by subpixel off-
sets, thereby accumulating the errors due to each reconstruction
step. The figure compares the two best-performing quadratic
reconstruction schemes with the result of our method. Visual
inspection suggests our method is superior at preserving high-
frequency content. This impression is confirmed quantitatively
by the perceptual SSIM [41] metric as well as the PSNR metric.

Such benchmarks are popular for two reasons: they magnify
small differences between competing methods and the input
images themselves serve as ground-truth. Nevertheless, the
ability to preserve image quality under so many repeated
operations can be useful, for example, in real-time reprojection
strategies, where attempts to explore spatio-temporal coherence
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and amortize computations across multiple frames suffer with
precisely this type of degradation [33].

Modern sampling and reconstruction strategies evolved from
the ideal sampling theory of Shannon-Whittaker [34]. Given a
uniform sample spacing T , ideal sampling prefilters an input
function f to obtain an approximation g that is bandlimited to
the Nyquist interval (- 0.5T , 0.5T ):

g(x) =

∫ ∞
-∞

f(t) sinc
(
(t− x)/T )

)
dt. (1)

Here, sinc(x) = sin(πx)/(πx) is the ideal low-pass filter. The
values of g(x) can then be reconstructed exactly from uniformly
spaced samples g(kT ) of g, k ∈ Z:

g(x) =
∑
k∈Z

g(kT ) sinc(x/T − k). (2)

If f is itself already bandlimited to (- 0.5T , 0.5T ), then prefiltering
becomes both unnecessary and harmless.

Despite its importance in countless domains, ideal sampling
suffers from a variety of shortcomings when applied to
image processing. Typical input functions are not bandlimited,
and their bandlimited approximations are often perceptually
unpleasant (i.e., they ring too much). Finally, the infinite
support and slow decay of the ideal low-pass filter make
evaluating (1) and (2) impractical or inefficient.

The vast majority of sampling and reconstruction strategies,
which were designed to address these shortcomings, fit within
the generalized sampling framework [38]. A recent survey
by Nehab and Hoppe [26] presents all relevant background
material. Generalized sampling replaces the ideal low-pass
filter in (1) by an arbitrary analysis filter ψ (a.k.a. antialiasing
filter, or simply prefilter) and in (2) by an arbitrary generating
function ϕ (a.k.a. reconstruction kernel). Notably, a digital
filter q (i.e., a discrete convolution) is inserted between
sampling and reconstruction to add crucial flexibility:

g(x) =

∫ ∞
-∞

f(t)ψ
(
(t− x)/T

)
dt, (3)

gk = g(kT ), ci =
∑
k∈Z

gk qi-k, (4)

f̃(x) =
∑
i∈Z

ci ϕ(x/T − i). (5)

We are interested in the situation where the input consists of
samples gk resulting from an image creation process that gives
us no control over ψ. Without any attempt at inferring ψ, our
goal is to obtain combinations of ϕ and q that enable efficient,
high-quality reconstructions.
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(a) Input image and detail (b) Cardinal Quadratic
O-MOMS [4]

(c) Quadratic Condat [9] (d) Our Quadratic

Fig. 1. Comparison between state-of-the-art quadratic quasi-interpolators with similar computational cost. The test consists of applying 40 cumulative
translations to the input. The net effect brings the image back in alignment with the input, so we compute the error due to the repeated resampling operations.
Our new quadratic is better at preserving detail. SSIM: (a) 1.0, (b) 0.977, (c) 0.987, (d) 0.995. PSNR: (a) ∞, (b) 32.938, (c) 34.149, (d) 36.443.

Our contributions are as follows:

• We provide intuition and examples to show that, contrary to
widespread belief, the asymptotic behavior of approximation
does not reliably predict image reconstruction quality;

• We propose a weaker image prior and alternative objective
function that form a better model for reconstruction quality;

• To the best of our knowledge, our work is the first to jointly
optimize for the degrees of freedom available in both the
generator function ϕ and digital filter q;

• We demonstrate improved reconstruction quality with novel
linear, quadratic, and cubic generators, each paired with its
own optimized digital filter.

II. NOTATION

When dealing with generalized sampling algorithms, it is
convenient to adopt a new notation that allows us to merge
equations (3)–(5) into index-free, variable-free expressions that
are shorter and easier to manipulate.

Let italicized lower-case symbols (e.g., f : R → C) denote
one-variable scalar functions, and let bold lower-case symbols
(e.g., c : Z→ C) denote discrete sequences.

Let function scaling and reflection be respectively denoted by

fT (x) = f(x/T ) and f∨(x) = f(−x). (6)

Define continuous, discrete, and mixed convolutions as

(f ∗ g)(x) =

∫ ∞
-∞

f(t) g(x− t) dt, (7)

(a ∗ b)n =
∑
k∈Z

ak bn-k, and (8)

(a ∗T f)(x) =
∑
i∈Z

ai f(x− iT ). (9)

Note that the discrete convolution inverse of q, when it exists,
is another sequence (perhaps with infinite support), denoted
by q-1 and satisfying

q ∗ q-1 = δ = [. . . , 0, 0, 1, 0, 0, . . .]. (10)

Finally, define the operation that uniformly samples a function f
into a discrete sequence, with sample spacing T (assume T = 1
when omitted)

JfKT =
[
. . . , f(−T ), f(0), f(T ), . . .

]
(11)

We can now write equations (3) through (5) as concisely as

f̃ = Jf ∗ ψ∨T KT ∗ q ∗T ϕT . (12)

The advantages of this notation are discussed in detail by Nehab
and Hoppe [26]. The remaining notation used throughout the
paper is standard, or otherwise defined where needed.

III. RELATED WORK

The design of reconstruction strategies can be seen as a process
in which the degrees of freedom in ϕ and q are eliminated
according to the requirements of a target application. Different
formulations for desirable properties have led to a multitude
of different schemes.

For efficient random-access to each reconstructed value, the
number of summation terms in (5) is limited by restricting ϕ
to functions that vanish outside a compact support with narrow
width W . Furthermore, the definition of ϕ is typically divided
into W polynomial pieces1, each with maximum degree N .
This leads to W × (N + 1) degrees of freedom in ϕ.

Certain applications require continuous or differentiable recon-
structions. This regularity constraint (f̃ ∈ CR) affects only the
generator: it can be traded off for degrees of freedom in ϕ. A
symmetry restriction ϕ = ϕ∨ is also typically imposed on the
generator.

It is often desired that the reconstruction interpolates all input
samples provided:

f̃(kT ) = gk = g(kT ) (13)

When reconstructing directly from samples gk, the interpolation
requirement leads to equations:

gk =
∑
i∈Z

gi ϕ(k − i), ∀k ∈ Z. (14)

The solution therefore imposes ϕ(0) = 1 and ϕ(i) = 0, for
all i ∈ Z \ {0}.

1Windowed-sinc approximations, such as Hamming [14] and Lanczos [13],
offer an inferior trade-off between reconstruction quality and speed compared
to piecewise polynomial kernels [24].
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A. The digital filtering stage

The digital filtering stage first appeared when Hou and Andrews
[15] proposed interpolation with the cubic B-spline kernel β3.
Such kernels do not respect the interpolation conditions above.
Rather than following (14), they proposed reconstructing from
coefficients ck to be found during a preprocessing stage to
satisfy the equations

gk =
∑
i∈Z

ci β
3(k − i) = 1

6ck-1 + 4
6ck + 1

6ck+1, ∀k ∈ Z. (15)

This Toeplitz, symmetric, tridiagonal linear system can also be
understood from the signal-processing perspective. The sample
sequence g results from the discrete convolution between the
unknown coefficient sequence c and the sampled cubic B-spline
kernel:

g = c ∗ Jβ3K, where Jβ3K =
[
1
6

4
6

1
6

]
(16)

The inverse operation is again a convolution, much like the
inverse of a matrix product is again a matrix product. It can
therefore be written in the form of the digital filtering stage of
equation (4):

c = g ∗ q, where q = Jβ3K-1. (17)

In practice, the convolution inverse is instead implemented
by factoring its Z-transform into two or more recursive
filtering passes [40], or by solving the linear system using
its precomputed LU -decomposition [21]. The computations
are essentially the same: about 5 floating-point operations per
sample in this example.

Conceptually, it is also possible to perform interpolation
directly, by using the cardinal generating function ϕint

gk =
∑
i∈Z

gk ϕint(k − i), where ϕint = ϕ ∗ JϕK-1. (18)

Note however that ϕint has infinite support, so that the indirect
formulation using ck and ϕ is more practical and efficient.

The digital filtering stage plays a key role in another fundamen-
tal problem. The set of all functions in the form of equation (5)
is a linear subspace of L2 (parametrized by ϕ and T ):

Vϕ,T = {c ∗T ϕT

∣∣ ∀c ∈ `2}. (19)

It is natural to look for the function in Vϕ,T that is closest to
the input f , i.e., its orthogonal projection Pϕ,T f . It is:

Pϕ,T f = c∗∗T ϕT , where (20)
c∗ = arg min

c
‖c ∗T ϕT − f‖L2 . (21)

This linear optimization problem was studied within computer
graphics by Kajiya and Ullner [18]. It involves the Gramian
matrix associated to shifts of the generator ϕ, which is again
a Toeplitz banded matrix. The linear system can be written as
the convolution

Jf ∗ ϕ∨
T KT = c∗ ∗ JaϕK, (22)

where aϕ = ϕ ∗ ϕ∨ is the auto-correlation of the generator ϕ.
The solution uniquely determines both the prefilter and the
digital filter

ψ = ϕ and q = JaϕK-1. (23)

In summary, the digital filtering stage is used in preprocessing
to reconstruction or post-processing to prefiltering. It is most
often a combination between narrowly supported convolutions
and their inverses, and brings great flexibility to the sampling
pipeline at little performance cost. Implementation is trivial.

The remaining degrees of freedom in ϕ and q are chosen to
maximize some notion of “reconstruction quality”. The most
prevalent notion is, by far, the approximation order.

B. Approximation order

Intuitively, the approximation order L measures the rate TL at
which the residual between the input f and its approximation f̃
vanishes as the sample spacing T tends to 0 (i.e., as the
sampling rate is progressively increased).

We say that the generator ϕ has approximation order L
when L is the largest positive integer for which there exist
constants C > 0 such that for all f ∈WL

2 (the Sobolev space):

‖f − Pϕ,T f‖L2
6 C · TL ·

∥∥f (L)
∥∥
L2
. (24)

The existence and uniqueness of Pϕ,T f must be guaranteed.
This is a mild condition on ϕ, easily verified in the frequency
domain [1] by any of the following: Vϕ,T should be a closed
subspace of L2, or the shifts of ϕ should form Riesz sequence,
or the sampled auto-correlation JaϕK should be invertible when
seen as a discrete convolution operator.

In that case, we can define the dual ϕ̊ of the generator ϕ:

ϕ̊ = ϕ ∗ JaϕK-1, (25)

so that the orthogonal projection can be expressed directly as

Pϕ,T f = Jf ∗ ϕ̊∨T KT ∗T ∗ϕT . (26)

A famous result by Strang and Fix [35] shows that ϕ has
approximation order L if and only if Vϕ,T contains all
polynomials up to degree L− 1. The same work shows that
interpolating the sampled f (i.e., without prefiltering) has the
same approximation order:∥∥f − JfKT ∗T (ϕint)T

∥∥
L2

6 Cint · TL ·
∥∥f (L)

∥∥
L2
, (27)

though naturally Cint > C. Unser [37] generalized this
further by showing that it is sufficient for ψ and q ∗ ϕ to
be biorthonormal:

Jϕ ∗ ψ∨K ∗ q = δ. (28)

It is easy to demonstrate the biorthonormality property for or-
thogonal projection, interpolation, and the consistent sampling
of Unser and Aldroubi [39] (a.k.a. oblique projection). This
approximation order guarantee is reassuring because, except
for synthetic images [17, 18, 22], we are rarely able to perform
orthogonal projection.
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The necessary condition for approximation order L is that
polynomials of degree up to L−1 must be preserved throughout
the entire sampling pipeline [8, 11]:

f̃T = Jf ∗ ψ∨T KT ∗ q ∗T ϕT = f, ∀f ∈ PL−1. (29)

More often than not, it is more convenient to express the
residual between the input and its reconstruction using the
frequency domain:

‖f − f̃‖2L2
≈
∫ ∞
-∞

∣∣f̂(ω)
∣∣2E(Tω) dω. (30)

An expression for the error kernel E(Tω) was first obtained
by Park and Schowengerdt [28], assuming no prefilter or digital
filter, and later refined by Schaum [32]. The expression for
arbitrary ψ, q, and ϕ, was obtained by Blu and Unser [3],
where it was shown that approximation order L is equivalent
to all derivatives of E up to order 2L− 1 vanishing at 0.

C. Previous reconstruction strategies

The increasing influence of approximation theory in the
development of reconstruction strategies is best illustrated by
the progress in cubic reconstruction (N = 3). Historically,
interpolation and C1-continuity were considered vital, and the
digital filtering stage was absent. The focus was on a family of
cubics defined by support W = 4 and regularity R = 1, and by
the interpolation requirement JϕK = δ. The single remaining
degree of freedom, measuring the slope α = ϕ′(1), was set
somewhat arbitrarily to match the slope of the ideal low-pass
filter sinc′(1) = −1 [30]. This choice leads to approximation
order L = 1.

Keys [19] and Park and Schowengerdt [28] independently
argued that, in order to achieve L = 3 under the same
constraints, the value for α should be −0.5 instead. Indeed,
this choice led to better results in practice [29]. Curiously, the
same cubic interpolator had been identified earlier by Catmull
and Rom [7] as appropriate for computer graphics applications,
with no recourse to approximation theoretical arguments.

In designing their cubic, Mitchell and Netravali [25] abandoned
interpolation and required approximation order L = 2. This
left only one degree of freedom remaining. This which was
selected for the best perceptual upsampling quality, as judged
by a small user study.

Keys [19] proposed an increased support W = 6 to achieve the
maximal approximation order L = 4 for cubics, but this never
became popular, perhaps due to the additional computational
cost. Instead of increasing support, Schaum [32] abandoned
the regularity requirement, reaching a family of maximal-order
local Lagrangian interpolators that includes a cubic (W = 4,
L = 4, but R = 0).

Blu et al. [5] found a complete parametrization of piecewise-
polynomial generating functions given N , W , R, and L. Blu
et al. [4] focused on the desirable subset with maximal order
and minimum support (MOMS). Their O-MOMS family results
from the minimization of the asymptotic constant C in (24)
under the assumption of orthogonal projection. Requiring

maximal regularity consumes all degrees of freedom and leads
to the B-spline family (proposed earlier by Hou and Andrews
[15] with no approximation-theoretical motivation). Requiring
interpolation without a digital filter also consumes all degrees of
freedom, and results in the same local Lagrangian interpolators
of Schaum [32].

Recent quasi-interpolation schemes use the B-spline family
as generators, and employ the digital filtering stage to mimic
the effect of orthogonal projection [2, 9, 10]. Although such
schemes do not interpolate arbitrary input functions, they
guarantee optimal approximation order (i.e., they interpolate
polynomials), and differ only on the generality of the digital
filters considered.

In summary, the development of reconstructions strategies
has focused on approximation order and its leading constant,
moved the interpolation condition to the digital filtering stage,
abandoned regularity, and finally abandoned interpolation itself.
We take the final step, by abandoning approximation order and
focusing directly on reconstruction quality.

IV. THEORY AND MOTIVATION

We base our optimization problem on the following theorem
due to Blu and Unser [3]. It quantifies the L2-error between
the input function f and the output function given by (29):

Theorem 1: For all f ∈Wr
2 with r > 1

2 , the approximation
error is given by2

‖f − f̃T ‖L2
=

(∫ ∞
-∞
|f̂(ω)|2E(Tω) dω

)1
2

+ e(f, T ), (31)

where e(f, T ) = o(T r) and

E(ω) = 1−
∣∣ϕ̂(ω)

∣∣2
âϕ(ω)

+ âϕ(ω)

∣∣∣∣q̂(ω) ψ̂(ω)− ϕ̂(ω)

âϕ(ω)

∣∣∣∣2. (32)

Proof: See appendix C in [3].

The residual term e(f, T ) vanishes in many situations such as
in the case where f is band-limited in the Nyquist interval [2].
Setting this term aside, formula (31) tells us that when most
of the energy of the input is concentrated at low frequencies
relative to the sampling spacing (i.e., for frequencies such
that Tω → 0), we can obtain a small residual by simply
requiring the error kernel E to vanish near Tω → 0.

This condition is satisfied by schemes with L > 0. Indeed,
approximation order L is equivalent to E and all its derivatives
up to degree 2L− 1 vanishing at zero [2]. In turn, this causes
the error kernel to behave as a polynomial with dominant
power ω2L near ω = 0. This is the intuition that motivated the
push towards schemes with high approximation order.

When two different schemes have the same approximation
order, the same intuition favors the one with the smallest
asymptotic constant C appearing in (24) and (27) [4, 6, 36].
This can be related to the error kernel (32), since this constant
is proportional to the coefficient of the (2L)th power of the
polynomial approximation of the error kernel around ω = 0 [2].

2f ∈ Wr
2 whenever

∫∞
-∞(1 + ω2)r

∣∣f̂(ω)∣∣2 dω <∞.
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(c) PSNR=29.86,
SSIM=0.90

Fig. 2. Comparison between the quadratic O-MOMS, a 3rd-order interpolator
proposed by Blu et al. [4], and a 4th-order cubic by Schaum [32]. Even with
its lower order, O-MOMS’s error kernel shows a better behavior overall in
most of the Nyquist interval (top left). Detail (top right) shows that Schaum’s
is only better for a tiny portion of the spectrum near the origin. Comparison
of 30 consecutive rotations confirm the better approximation qualities of the
O-MOMS interpolator.
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Fig. 3. Comparison between a quadratic interpolator proposed by Dodgson [12]
and the cubic by Mitchell and Netravali [25] (not interpolating), both with
approximation order 2. Error kernels show the overall better behaviour of
Dodgson’s interpolator in the full Nyquist interval. This is despite its poorer
behaviour near the origin (top right), as predicted by its higher asymptotic
constant. Comparison of 15 consecutive translations show the higher quality
achieved by Dodgson’s interpolator.

We agree that a higher approximation order and small asymp-
totic constant can be important in many applications. However,
as we show in figures 2 and 3, it is possible to find counter-
examples for both criteria for exactly the applications that are
typically used to showcase the approximation quality achieved
by following these recommendations.

Figure 2 compares the 3rd-order (cardinal) quadratic interpolator
O-MOMS [4] with the 4th-order cubic local Lagrangian inter-
polator [32] in an experiment that consists of 30 compounded
rotations. At each rotation step, the input image is interpolated,
and sampled at a 360o

30 = 12o rotation. The result is used as input
for the next rotation step, and so on, until the image is back to
its initial position. At this point it is compared to the original
input. The PSNR and SSIM measures are higher (meaning
higher quality) for the result with O-MOMS (Figure 2b), even
though it has a lower approximation order. The plot of the
error kernels for both approximation schemes (Figure 2 top left)
show that quadratic O-MOMS has a smaller value overall in the
full Nyquist interval although it is worse for low frequencies
(Figure 2 top right), the latter behavior being expected since it
has lower approximation order.

In figure 3, we compare the performance of the quadratic inter-
polator designed by Dodgson [12] with the (non-interpolating)
cubic proposed by Mitchell and Netravali [25]. Both these
kernels have approximation order 2, so we would expect
the one with smaller asymptotic constant to perform better
(The formula for obtaining the constant is available in [3].) In
this case, the constant for Dodgson’s interpolator is slightly
larger than Mitchell-Netravali’s cubic’s (by about 0.0004).
Nevertheless, the compounded 15-translations in figure 3 show
that Dodgson’s interpolator generates a better result (Figure 3b).
This is again due to a better behaviour in the full Nyquist
interval (Figure 3 top left), despite slightly worse low-frequency
behavior (Figure 3 top right).

These counter-examples exist because the benchmarks violate
the underlying assumption that the input frequency content
is concentrated around Tω → 0. Indeed, the input power

spectrum for natural images tends to behave as∣∣f̂(ω)
∣∣2 ≈ 1

ωp
, (33)

where p varies from 1.6 to 3.0 [16, 31]. A photograph
taken underwater tends to be blurrier, so p will be larger.
A photograph of foliage contains more high-frequency content,
so p will be smaller. While the idea of taking T → 0 is valid
for numerical analysis applications that control the sampling
spacing, we are not afforded the same freedom in most image-
processing applications. We must therefore analyze the error
kernel E over the entire frequency domain.

Recall we only have access to the samples of f . If f was
subjected to a good prefilter prior to sampling, the frequency
content outside the Nyquist interval is close to zero. If not,
whatever frequencies survived outside the Nyquist interval have
already been aliased back into it when the image was sampled.
Therefore, rather than integrating on the real line as in (31),
we focus on the Nyquist interval:

‖f − f̃T ‖2L2
≈
∫ 0.5

T

− 0.5
T

∣∣f̂(ω)
∣∣2E(Tω) dω. (34)

Since T is fixed, we may assume T = 1 with no loss of
generality (see appendix B for proof).

We can now define our objective function for minimization:

min

∫ 0.5

−0.5

∣∣f̂(ω)
∣∣2E(ω) dω. (35)

Assuming f̂ known (to be detailed in section V) and previously
prefiltered (ψ = δ or ψ̂ ≡ 1), the degrees of freedom lie in the
definitions of the digital filter q and the generator ϕ.

We explore three options for the form of digital filter q: FIR,
IFIR, and FIR-IFIR. Formally,

FIR : q = [. . . , 0, d-j , . . . , d0, . . . , dj , 0, . . .], (36)
IFIR : q = [. . . , 0, e-k, . . . , e0, . . . , ek, 0, . . .]

-1
, and (37)

FIR-IFIR : q = d ∗ e. (38)
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These formulations contain 2j + 1, 2k + 1, and 2(j + k + 1)
degrees of freedom, respectively.
To isolate the degrees of freedom in the generator in a meaning-
ful way, we use the parametrization by Blu et al. [5] in terms
of its degree N , support W , regularity R, and approximation
order L (for simplicity, we write ϕ ∈ {N,W,L,R}).
Theorem 2: Given W > N , ϕ ∈ {N,W,R,L} if and only
if there exists a unique set of coefficients ak,`, bk,`, and ck,`
such that

ϕ
(
x− W

2

)
=

M∑
`=1

N-L-`∑
k=0

ak,`
(
βL+k-1
nc ∗ γN-L-k

`

)
(x)

+

M∑
`=0

W -N+`-1∑
k=0

bk,` β
N-`
nc (x− k)

+

W -L∑
k=0

L-R-2∑
`=0

ck,` ∆∗` βL-`-1
nc (x− k),

(39)

where M = N −max(R+ 1, L).
Proof: See [5].
In the formulas above,

βn
nc(x) = βn

(
x− n+1

2

)
, (40)

is the non-centered B-spline, ∆∗` is the `th-order finite
difference, and γn` are linear combinations of finite difference
operators applied to the polynomial simple elements defined
in [5]. For example, setting N = 1, W = 2, R = −1
(meaning ϕ is bounded), and L = 1 in the theorem produces

ϕ(x) = b0,0β
1(x) + c0,0β

0
(
x+ 1

2

)
+ c1,0β

0
(
x− 1

2

)
(41)

This gives us 3 additional degrees of freedom, relative to the
common choice of ϕ = β1(x) [9, 10], with which we minimize
our objective function.

V. OPTIMIZATION

We now state the minimization problem that will result in
optimal quasi-interpolators. Before the objective function itself,
we detail the constraints.
a) Degree and width of ϕ: The degree N is the guiding
parameter in our method. We set the width to W = N + 1 to
match the run-time efficiency of generators such as B-splines
and O-MOMS.
b) Regularity of ϕ: The only restriction we impose is bound-
edness (R = −1). Several authors have observed that regularity
is not fundamental for good approximation quality [4, 32]. Our
results confirm this. Applications requiring more regularity (e.g.,
for derivatives) can change this parameter in the optimization.
c) Approximation order of ϕ: In stark contrast to previous
work, we only require first-order approximation (L = 1). This
means that frequency ω = 0 will be preserved. As with the
regularity constraint, these additional degrees of freedom are
better left to the discretion of the optimizer.
These constraints determine the coefficients in (39) that are
available for minimization. We encapsulate them into lists of
coefficients A, B and C:

A = {ak,`}, B = {bk,`}, C = {ck,`}. (42)

d) Symmetry of ϕ and q: To ensure that our quasi-interpolators
have linear phase response, we require q ∗ ϕ to be symmetric.
This imposes linear relationships between the coefficients ak,`,
bk,`, and ck,`, and sets di = d-i, and ei = e-i, for all i.

e) Unit scale for ϕ and q: There is a scale ambiguity within
the remaining degrees of freedom. Scaling ϕ by s and q by 1

s

leaves the quasi-interpolator q ∗ ϕ unchanged. We therefore
impose∫ ∞

-∞
ϕ(x) dx = 1, and

∑
i∈Z

di =
∑
i∈Z

ei = 1. (43)

f) Approximation order of the scheme: We also require the
scheme as a whole to have first order of approximation. The
generator ϕ satisfies the restriction by construction, but a
misguided choice of q could ruin it. The equivalent condition
on the error kernel is

E(0) = 0. (44)

See [2] for the proof.

g) Objective function: Recall the spectrum of natural images
tends to follow (33). Since we seek input-independent quasi-
interpolators, we set p to the intermediate value of p = 2:∣∣f̂(ω)

∣∣2 ≈ 1

ω2
. (45)

This choice has an additional advantage in our formulation.
Since we are imposing E(0) = 0 and since E′(0) = 0 is
automatically satisfied due to the symmetry of the error kernel,
we have E(ω) proportional to ω2 near the origin. This causes
the integrand in (35) to converge to a finite value at the origin.

h) The optimization problem: Given a degree N :

arg min
q,A,B,C

F (d) :=

∫ d

0

1

ω2
E(ω) dω (46)

subject to ϕ ∈ {N,N + 1,−1, 1}, (47)
ϕ∨ = ϕ, q∨ = q, (48)∫ ∞

-∞
ϕ(x) dx = 1,

∑
k∈Z

qk = 1, (49)

E(0) = 0. (50)

(We can restrict the integral to positive ω because of symmetry.)

i) Controlling overshoot and aliasing: The natural choice for
the integration limit d in (46) is 0.5, since we only have access
to samples of f . Unfortunately, this often results in quasi-
interpolators with highly oscillating spectra, such as the one
presented in figure 4c.

By minimizing (46) with d = 0.5, we are requiring the error
kernel to be small near ω = 0.5, say E(0.5 − ε) ≈ 0. As
shown in appendix B, this implies

ϕ̂qi(0.5− ε) ≈ 1, ϕ̂qi(0.5 + ε) ≈ 0,

ϕ̂qi(-0.5 + ε) ≈ 1, ϕ̂qi(-0.5− ε) ≈ 0.
(51)

Thus E(0.5 − ε) ≈ 0 leads to ϕ̂qi(ω) = q̂(ω)ϕ̂(ω) that
approximates a function with discontinuities near ω = ±0.5.
Since ϕ̂(ω) cannot oscillate much (see [5] for the expression),
q̂(ω) must approximate the discontinuities near ω = ±0.5.
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(a) PSNR = ∞, SSIM = 1.0 (b) PSNR = 34.662,
SSIM = 0.995

(c) Frequency response (d) PSNR = 43.812,
SSIM = 0.999

(e) Frequency response

Fig. 4. Quadratic interpolation result for 20 compounded translations. Minimizing F (0.5) leads to a quasi-interpolator ϕqi that overshoots high frequencies (b).
This problem is avoided by minimizing F (0.34) (d), where the value d = 0.34 was automatically obtained by a binary search. Plots in figures (c) and (e)
show the frequency responses of the associated quasi-interpolators.

Given the filter has a finite support, its DTFT is a finite sum of
sinusoids (or the reciprocal of it), and this leads to the Gibbs
phenomenon in q̂(ω). It is modulated by ϕ̂(ω) and manifests
itself as ringing in the reconstructed images (figure 4b).

To prevent this issue, we only consider quasi-interpolators that
satisfy the following admissibility conditions:

ϕ̂qi(ω) 6 1.0025, ∀ω ∈ [−0.5, 0.5] and (52)
|ϕ̂qi(ω)| 6 0.025, ∀ω ∈ [−∞,−0.75] ∪ [0.75,∞] . (53)

Intuitively, condition (52) prevents overshoot and condition (53)
prevents aliasing. The values 1.0025, 0.025 and 0.75 were
empirically determined. To solve the optimization problem,
we relax the objective function by performing a binary search
for the largest value of d ∈ [0, 0.5] in (46) that leads to an
admissible quasi-interpolator.

Note that condition (53) excludes the interval (0.5, 0.75). In
fact, for N = 1, even this relaxed condition is too restrictive,
so we test only for condition (52). Degrees N = 2 and 3 have
larger parameter spaces, and we find values for d that satisfy
both constraints.

The practical effect of the admissibility conditions can be seen
in the example of figure 4. There, the quasi-interpolator that
results from the optimization with d = 0.5 leads to overshoot in
high frequencies (note ringing surrounding thorns). The binary
search finds the value d ≈ 0.34. The resulting quasi-interpolator
is softer, but overshooting is mostly gone.

j) Length and type of q: We optimized (46)–(50) under FIR,
IFIR and FIR-IFIR digital filter formulations. IFIR filters
achieved higher quality at similar computational costs to FIR
and FIR-IFIR filters. The wider q is (i.e., the more degrees
of freedom it offers), the lower objective function values are
obtained. However, little is gained for widths greater than 5.
We therefore always use width 5 and an IFIR formulation for
the digital filter.

VI. RESULTS AND DISCUSSION

We implemented our numerical optimization framework within
Mathematica. The optimization method by Nelder and Mead
[27], which is suitable for constrained non-linear problems,
was the most reliable for our objective function. The objective
function is somewhat brittle, due to the integrand in (46) being
unstable near the origin. We were careful to keep the error

kernel in a simple algebraic form to avoid numerical round-off
errors. All calculations were performed with 20-digit precision.
The Quasi-Monte Carlo method gave the most robust results
for the numerical integration of (46). To reduce the risk of
finding poor local minima, we solve each optimization problem
40 times, with randomization, and select the best result. The
optimization completes in a few minutes. The values for all
resulting parameters for degrees 1, 2, and 3 are given in
appendix A. For convenience, we also provide the source-
code for the generators and the digital filter coefficients in the
supplementary materials.

Figure 5 shows plots of our quadratic and cubic generators ϕ
and their associated quasi-interpolators ϕqi = q ∗ ϕ (b). Like
the local Lagrangian interpolators of Schaum [32] and the
O-MOMS of Blu et al. [4], our quadratic is not continuous,
and the cubic is not differentiable. These point discontinuities
and irregularities are not detrimental to approximation quality.
The figure also shows a comparison between the absolute
value of the frequency response ϕ̂qi of our quasi-interpolators
with the state-of-the art. Our interpolators are clearly the
sharpest. Furthermore, the error kernel plots show that our
quasi-interpolators have lower error overall in the Nyquist
interval. Please note that the plots of the previous state-of-the-
art are closer to each other than to our new quasi-interpolators.

We compare the quality of our reconstruction schemes against
previous quasi-interpolators by performing a variety of practical
experiments.

Figure 6 shows the results of our quantitative experiments
on two image benchmarks. The first benchmark consists of
the 24 photographs in the Kodak [20] dataset. The second
benchmark is composed of a selection of medical images of
different sources (some of them are shown in the supplementary
materials). The experiment consists of applying 75 compound
randomized translations to the images. The randomization is
added to rule out the possibility of errors being cancelled
by negative correlations. The sequence of translations is such
that, after every 3 translations, the net translation is zero. At
these points, we can measure PSNR against the original input,
and this is what the plots show. To obtain a single number,
we average the PSNR results over all images in each dataset.
Results show that our new cubic quasi-interpolator performs
best, even when compared to quintic quasi-interpolators.
Similarly, our new quadratic quasi-interpolator performs better
than all other quadratics and cubics.
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Fig. 5. Impulse responses of our quadratic and cubic generators (a,c) and the corresponding quasi-interpolators (b,d). Comparison of the frequency responses
the quasi-interpolators against the best quadratics and cubics (e,g) show ours to be the sharpest. The associated error kernels (f,h) are the lowest over most of
the Nyquist interval.
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Fig. 6. Average PSNR of applying 75 randomized translations to (left) the Kodak dataset and (right) a set of medical images. The best and most popular
quasi-interpolators in the literature are compared. Our new cubic quasi-interpolator (solid red) reaches the best quality, better even than the quintic O-MOMS
(dashed purple). Our new quadratic (dotted red) reaches quality superior to any other quadratic or cubic.

Figure 7 shows visual results for our linear quasi-interpolator.
Our results are significantly sharper than those obtained by the
linear state-of-the art [9]. In fact, our results compare favourably
even against the cardinal quadratic B-spline. Comparisons with
other quasi-interpolators for this setting are provided in the
supplementary materials.

The example in figure 8 shows the improvement of our
quadratic quasi-interpolator relative to the quadratic by Condat
et al. [9]. Our quadratic compares favourably even against the
state-of-the-art cubic O-MOMS interpolator [36]. Additional
comparisons are shown in the supplementary materials.

Figure 9 tests the quality of our cubic quasi-interpolator with a
challenging task of rotating a high-frequency pattern consisting
of parallel lines. Our result shows almost perfect reconstruction.
The cubic quasi-interpolator proposed by Blu and Unser [2]
(which uses a wider FIR-IFIR formulation) and, to a lesser
extent, the quintic cardinal B-spline, show aliasing in the form
of spurious slanted lines. Please see more comparisons in the

supplementary materials. This final example helps emphasize
one of the key points in our paper: the quintic cardinal B-
spline has approximation order 6, and our cubic has only
approximation order 1. Nevertheless, our cubic performs better.

The slight disagreement between PSRN and SSIM in fig-
ure 9 (c,d) (even clearer in figure 6 (d,e) in the supplementary
materials) gives further evidence that the L2 metric is not
the best proxy for the perceptual differences detected by the
human visual system. This is the reason why we must tweak
our objective function. More work is required in this area.

We recommend the use of our solutions for degrees 2 and 3,
given their superior performance and moderate computational
cost (please see a performance comparison with previous
methods in the supplementary materials). Tasks requiring even
more speed can use the degree 1 solution, which we take as a
proof-of-concept. Please see the supplementary materials for
full resolution images of all these experiments. We also provide
additional videos containing other interpolation sequences.
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Input Linear Condat [9] Cardinal Quadratic B-spline Our Linear

(a) PSNR = ∞, SSIM = 1.0 (b) PSNR = 25.873,
SSIM = 0.862

(c) PSNR = 27.000,
SSIM = 0.898

(d) PSNR = 28.584,
SSIM = 0.942

Fig. 7. 9 repeated (randomized) translations. Our linear quasi-interpolator (d) produces a result sharper than the one produced by one of the best linear
quasi-interpolators [9] (b). The output by our method is also slightly better than the one produced with the cardinal quadratic B-spline (c).

Input Quadratic Condat [9] Cardinal Cubic O-MOMS Our Quadratic

(a) PSNR = ∞, SSIM = 1.0 (b) PSNR = 30.429,
SSIM = 0.932

(c) PSNR = 32.221,
SSIM = 0.951

(d) PSNR = 33.291,
SSIM = 0.960

Fig. 8. 30 (randomized) rotations for different quasi-interpolators. The quadratic proposed by Condat et al. [9] distorts the vertical aspect of the fence, while
ours better preserves the geometry of the scene. Our result is competitive even if compared with the one produces by the cardinal cubic O-MOMS (considered
the best cubic in the literature).

Input Cubic Blu and Unser [2] Cardinal Quintic B-spline Our Cubic

(a) PSNR = ∞, SSIM = 1.0 (b) PSNR = 13.013,
SSIM = 0.749

(c) PSNR = 13.047,
SSIM = 0.775

(d) PSNR = 13.044,
SSIM = 0.784

Fig. 9. 40 compounded rotations. The result produced by one of the best cubic quasi-interpolators [2] has aliasing of high frequencies. Using the cardinal
quintic B-spline leads to the same problem at a smaller magnitude. Our cubic almost completely removes the artefacts, while keeping the result sharp.

A. Limitations

One limitation of our method can be seen in figure 10, which
uses our linear quasi-interpolator (b). The figure shows the
result of 4 compound translations by exactly half a pixel. It is
clear that high-frequencies have been excessively magnified.
This limitation is not specific to our approach (c). The plots
in figure 10 explain the problem: for each translation τ , the
shaded region illustrates the minimum and maximum possible
frequency amplitude scaling. The worst behavior happens in the
unfortunate case τ = 0.5. This problem practically disappears
when random translations are applied.

We have also noticed that the sharpness of our results comes
at the cost additional mild ringing (for instance, see figure 1d).
For hundreds of repeated translations, our linear and quadratic
quasi-interpolators showed excessive ringing. In this extreme
case, other methods presented either a similar behavior or
excessive blurring.

VII. CONCLUSION AND FUTURE WORK

We have presented a new class of quasi-interpolators for image
processing that are optimal with respect to a non-asymptotic
criterion. In contrast, previous strategies focused on making
them optimal only around ω = 0. Additionally, we used all
available degrees of freedom in the approximation problem to
reach higher quality.

An improvement to our optimization would be to consider a
metric other than L2. On one hand, it could lead to a more
natural treatment for the overshoot problem, but it could also
add additional difficulties to the optimization.

In this work we have considered a 1D formulation of the
approximation problem, but applied it to images in a separable
fashion. We believe that considering non-separable 2D quasi-
interpolators will increase approximation quality, and we also
consider this direction for future work.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TIP.2015.2478385

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



SUBMITTED TO IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. XX, NO. X, MMM YYYY 10

 0

 0.5

 1

 1.5

-0.4 -0.2  0  0.2  0.4

τ

 0

 0.5

 1

 1.5

-0.4 -0.2  0  0.2  0.4

τ

(a) Input (b) Our linear (c) Linear Condat [9]

Fig. 10. 4 repeated translations by exactly half pixel. Our linear quasi-
interpolator (b) and the one proposed by Condat et al. [9] magnify frequencies
too much. Shaded regions in the plots show the range of frequency amplitude
scaling for each translation τ . The worst case is τ = 0.5.

APPENDIX A
QUASI-INTERPOLATORS

a) Linear: d = 0.5.

b0,0 = 0.79076352 c0,0 = c1,0 = 0.10461824,

e0 = 0.77412669, e1 = e-1 = 0.11566267,

e2 = e-2 = −0.00272602

b) Quadratic: d ≈ 0.34.

a0,1 = 0, b0,0 = 0.75627421,

b0,1 = b1,1 = 0.11798097, c0,0 = c2,0 = 0.01588197,

c1,0 = −0.02400002, e0 = 0.65314970,

e1 = e-1 = 0.17889730, e2 = e-2 = −0.00547216

c) Cubic: d ≈ 0.35.

a0,1 = 0.07922533, a0,2 = 0,

a1,1 = −2.25 a0,1 = −0.17825701, b0,0 = 0.53954836,

b0,1 = 0.32092636, b0,2 = b2,2 = 0.02593862,

b1,1 = −1.5 a0,1 + b0,1 = 0.20208835, b1,2 = −0.01871558,
c0,0 = c3,0 = 0.001940114, c1,0 = c2,0 = −0.00028665,

e0 = 0.56528428, e1 = e-1 = 0.21523558,

e2 = e-2 = 0.00212228.

APPENDIX B
PROOFS

We can take T = 1 in (34) because, for any fixed T > 0, and
assuming input spectra as (33):

‖f − f̃T ‖2L2
≈
∫ 0.5/T

−0.5/T

∣∣f̂(ω)
∣∣2E(Tω) dω

= T
∫ 0.5

−0.5

∣∣f(ω/T)
∣∣2E(ω) dω

= T p+1
∫ 0.5

−0.5 1/ωpE(ω) dω

= T p+1
∫ 0.5

−0.5

∣∣f̂(ω)
∣∣2E(ω) dω.

(54)

To see why E(0.5−ε) ≈ 0 implies ϕ̂qi(0.5−ε) ≈ 1, ϕ̂qi(0.5+
ε) ≈ 0, ϕ̂qi(-0.5 + ε) ≈ 1, ϕ̂qi(-0.5 − ε) ≈ 0, recall ψ̂ = 1,
and both q̂ and ϕ̂ are real due to symmetry.

Simplifying:

E(ω) = 1− ϕ(ω)2

âϕ(ω)
+âϕ(ω)

(̂
q(ω)2−2

q̂(ω)ϕ̂(ω)

âϕ(ω)
+
ϕ̂(ω)2

âϕ(ω)2

)
= 1−2q̂(ω)ϕ̂(ω)+q̂(ω)2âϕ(ω)

=
(
1−q̂(ω)ϕ̂(ω)

)2−q̂(ω)2ϕ̂(ω)2+q̂(ω)2
∑
n

ϕ̂(ω+n)2

=
(
1−q̂(ω)ϕ̂(ω)

)2
+
∑
n 6=0

q̂(ω+n)2ϕ̂(ω+n)2

=
(
1−ϕ̂qi(ω)

)2
+
∑
n 6=0

ϕ̂qi(ω+n)2. (55)

Above, we used the following equalities

ϕ̂qi(ω) = q̂(ω)ϕ̂(ω) (56)
q̂(ω) = q̂(ω + n),∀n ∈ N, and (57)

âϕ(ω) =
∑
n

ϕ̂(ω + n)2. (58)

The sum of non-negative terms in (55) shows us that

E(0.5− ε) ≈ 0⇒

{
ϕ̂qi(0.5− ε) ≈ 1,

ϕ̂qi(-0.5− ε) ≈ 0.
(59)

Symmetry of E implies E(-0.5 + ε) ≈ 0. From (55), we have

E(-0.5 + ε) ≈ 0⇒

{
ϕ̂qi(-0.5 + ε) ≈ 1,

ϕ̂qi(0.5 + ε) ≈ 0.
(60)
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