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Figure 1: Our off-line preprocessing algorithm produces a depth-presorted triangle list from a static 3D input model. The list contains copies
of the model that are depth-sorted relative to any viewpoint outside its bounding volume. Each triangle comes annotated with a half-space test
that enables a fast run-time algorithm to select exactly the triangles needed to render a complete depth-sorted model for a given viewpoint.

Abstract

We present a novel approach for real-time rendering of static 3D mod-
els front-to-back or back-to-front relative to any viewpoint outside
its bounding volume. The approach renders depth-sorted triangles
using a single draw-call. At run-time, we replace the traditional
sorting strategy of existing algorithms with a faster triangle selection
strategy. The selection process operates on an extended sequence of
triangles annotated by test planes, created by our off-line preprocess-
ing stage. Based on these test planes, a simple run-time procedure
uses the given viewpoint to select a subsequence of triangles for ras-
terization. Selected subsequences are statically presorted by depth
and contain each input triangle exactly once. Our method runs on
legacy hardware and renders depth-sorted static models significantly
faster than previous approaches. We conclude demonstrating the
real-time rendering of order-independent transparency effects.
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1 Introduction

In real-time rendering applications that employ the Z-buffer for visi-
bility determination [Catmull 1974], there are still many scenarios in
which depth-sorting is necessary or desirable. The most common is

order-independent transparency or translucency. Since the composit-
ing operation is not commutative [Porter and Duff 1984], blending
must happen in depth-sorted order.

As we discuss in section 2, a large number of techniques have been
proposed for performing real-time depth sorting. In this work, we
present a technique that possesses a unique combination of desir-
able properties. It can be implemented with the standard graphics
pipeline, requires a single rendering pass, uses a fixed amount of
memory, produces exact results, is very simple to integrate with
existing rendering engines, and is extremely efficient.

These advantages come with certain limitations. Whereas most pre-
vious depth-sorting algorithms work seamlessly with deformable
geometry at run-time, our method assumes static geometry viewed
from outside the model’s bounding volume. Finally, our preprocess-
ing stage can take hours to complete when run on larger models, and
the resulting data-structure consumes more memory than the input.

We target performance-critical applications that must render a num-
ber of moderately complex static objects with translucency effects,
such as computer games. In this scenario, which we demonstrate in
the results section, the relative order between objects is determined
by the CPU, and our method ensures correct triangle ordering within
each object. During game development, instant feedback can be
provided to artists using earlier, less efficient methods. At the end
of the release cycle, required models can be preprocessed and the
engine set up to take advantage of the simplicity of our run-time
component, and of the large performance gains that ensue. Since
only the transparent components of objects with translucency effects
must be preprocessed, the increase in run-time memory is not a
significant limitation either.

Our key insight is that the space of different triangle orders that result
from depth-sorting a triangle model under each possible viewpoint
constitutes a tiny fraction of all triangle permutations. Moreover,
this “space of depth-sorted orders” is extremely redundant in the
sense that, with few modifications, the same order is valid for large
portions of the viewpoint space.
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We explore this insight in the following way. During a preprocessing
stage, we create an extended sequence of triangles (i.e., a list that
contains one or more instances of each input triangle). By construc-
tion, this extended sequence is such that there is a view-dependent
subsequence of triangles that is depth-sorted relative to each and ev-
ery viewpoint outside of a bounding volume. These view-dependent
subsequences are guaranteed to include each input triangle exactly
once. Within the extended sequence, each triangle is paired with a
half-space. The entire extended sequence is sent for rendering by
the GPU, at which point an extremely simple and efficient run-time
procedure selects those triangles for which the associated half-space
contains the viewpoint. The result is a depth-sorted rendering of the
original input triangles, relative to the viewpoint.

Since there is no run-time sorting, only a trivial run-time selection
procedure, our method runs at an order of magnitude faster than
previous approaches. This selection happens in a single rendering
pass, and can be implemented at any stage of the rendering pipeline
(vertex, geometry, or fragment shaders). Finally, there is no CPU
intervention and results are guaranteed to be exact.

In summary, our contributions include:

• The fastest single-draw-call, exact, real-time depth-sorted ren-
dering algorithm for static models;

• A preprocessing algorithm for creating a compact extended
sequence of triangles and associated half-spaces containing
depth-sorted subsequences relative to all viewpoints;

• Three versions of the run-time algorithm for selecting the
subsequence associated to a given viewpoint, all leading to
state-of-the-art run-time performance.

The rest of the paper is organized as follows. In section 2 we position
our method in context with previous work. Section 3 presents two
simple examples that will be helpful in understanding the prepro-
cessing algorithm, which is described in section 4. The run-time
selection algorithms are presented in section 5. Section 6 provides
relevant statistics specific to our method, as well as performance
comparisons against previous approaches. We conclude by revisiting
the strengths and weaknesses of the method and suggesting venues
for future work.

2 Related work

The problem of depth-sorting is tightly connected to the problem
of visibility, for which there is a vast amount of prior work. Here,
we focus on the methods we believe are most related to ours. Note
that many depth-sorting methods can be used to render dynamic
(or even self-intersecting) geometry. Naturally, when comparing
them against our approach, we assume the target application does
not require this functionality.

The most well-known approach for rendering depth-sorted static
geometry is the BSP tree [Fuchs et al. 1980; Paterson and Yao 1989].
Each node in a BSP tree includes a half-space test. The root node
represents the entirety of space, and each subtree represents the
fraction of the parent’s space that reside in one of the two half-
spaces. The BSP tree is created during a preprocessing stage, much
like our extended triangle list. To render from a BSP, the tree is
traversed recursively at run-time. For back-to-front rendering, when
visiting a node, the subtree representing half-spaces that contain the
viewpoint are visited last. In our method, the half-spaces are instead
used to separate the viewpoints for which a given individual triangle
instance must be drawn from those for which it must be ignored.

Other than the BSP, additional data-structures used for depth sort-
ing include directed acyclic graphs [Williams 1992], feudal priority
trees [Chen and Wang 1996], and Voronoi diagrams [Fukushige and
Suzuki 2006]. In contrast, our extended list is a flat data-structure,

potentially including multiple copies of each triangle, each of which
is selected or not by the viewpoint. Our method is therefore better
suited for modern GPUs, where recursiveness and pointer manipula-
tion are difficult or otherwise inefficient to accomplish.

Early CPU-based approaches also generate flat or semi-flat data-
structures. Newell et al. [1972] and Goad [1982] both describe
automatic procedures that sort triangles into a priority order for
given viewpoints. Schumacker et al. [1969] propose a method that
separates the scene into convex clusters during preprocessing. The
faces in each cluster can be assigned a fixed order which, after
back-face culling, provides correct visibility from any viewpoint.
These clusters must be mutually separable by planes, and the order
of displaying these clusters is computed at run-time. Our method
leverages GPU hardware in order to render the model using a single
draw call without requiring ordering computations at run-time.

The most general techniques operate at the pixel level. The typical
strategy is to generate per-pixel fragments lists and then sort each list,
as in the A-buffer [Carpenter 1984]. This is challenging, since there
is no way to guess the total number of fragment storage that will be
needed, or the number of fragments needed per pixel. New hardware
capabilities have recently enabled the use dynamic linked lists to
collect fragments and blend them in order [Yang et al. 2010], or
instead to count the number of fragments in a first rasterization pass
and store them into individual arrays during a second pass [DX10
SDK 2010], before compositing them in parallel [Patney et al. 2010].
Our method requires a single pass, uses constant memory, and is
significantly faster, particularly when multiple samples per pixel are
used for anti-aliasing (e.g. MSAA).

Many modifications to the rendering pipeline have been proposed
that support variations of the A-buffer. These include the R-
buffer [Wittenbrink 2001], the F-buffer [Mark and Proudfoot 2001],
Delay Streams [Aila et al. 2003], and the FreePipe architecture [Liu
et al. 2010]. Our method runs on the standard rendering pipeline.

Another alternative is to render the scene as many times as required
by the maximum depth complexity. At each pass, the Z-buffer is
used to select the next closest fragment [Mammen 1989; Everitt
2001; Thibieroz 2008] (much like selection sort). For performance
reasons, variations of this idea split the scene into pieces that are
presorted [Wexler et al. 2005], peel multiple layers per pass [Liu
et al. 2006; Bavoil and Myers 2008], or exploit any ordered structure
that may already be present [Carr et al. 2008]. The algorithms are
exact and the amount of memory needed is fixed. Our method is
simpler and, depending on the depth-complexity, significantly faster.

Many methods rely on approximations for performance reasons. A
common approach is to limit the maximum number of fragments per
pixel [Jouppi and Chang 1999; Myers and Bavoil 2007a,b; Bavoil
et al. 2007; Liu et al. 2009; Huang et al. 2010; Salvi et al. 2011],
in which case some heuristic must be used to merge or evict over-
flowing fragments. In the case of order-independent transparency,
ignoring order is sometimes acceptable [Meshkin 2007; Bavoil and
Myers 2008]. Another method that avoids the need for sorting is
stochastic transparency [Enderton et al. 2010; Laine and Karras
2011], a refreshing new take on screen-door transparency [Foley
et al. 1990; Mulder et al. 1998]. Our method always produces noise-
free renderings and is significantly faster. Some approximations
work particularly well for hair, volumetric data, or both [Kim and
Neumann 2001; Callahan et al. 2005; Yuksel and Keyser 2008; Sin-
torn and Assarsson 2008, 2009; Jansen and Bavoil 2010; Salvi et al.
2011]. Our method is not suitable for such high depth-complexities.
Finally, in the context of overdraw reduction, some static orders may
succeed in eliminating most of the overdraw [Nehab et al. 2006;
Sander et al. 2007].



Figure 2: A simple 2D example (left), after duplicating triangles
(right), and the resulting occlusion graph (bottom).

Figure 3: A simple example with a cycle (left), and the result of
duplicating triangle H using the cutting plane p (right).

3 Motivating examples

We begin by presenting two simple examples that will motivate our
strategy for building depth-presorted triangle lists. For simplicity,
we show both examples in 2D (see figures 2 and 3), with triangles
represented by line segments. The arrows next to each triangle
represent the normal direction.

3.1 A view-independent depth-presorted model

Consider the non-convex model in figure 2 (top left). We will show
that it is possible to produce depth-sorted renderings of this model
(including back-facing triangles) from any viewpoint, using a fixed
triangle ordering. At first sight, this seems difficult, given that the
occlusion relationship between two triangles may be reversed when
the viewpoint changes (i.e., when viewing from above, C occludes
E, while when viewing from below, E occludes C).

The trick is to duplicate each triangle by including an additional
instance with the opposite orientation. The augmented model,
with newly instanced back-facing triangles in blue, is shown in
figure 2 (top right). Although there are now twice as many triangles
as in the original model, back-face culling ensures the hardware will
rasterize at most one instance of each triangle. The additional free-
dom awarded by the duplication will allow us to create the triangle
ordering we seek.

In the case of figure 2 (with back-face culling), triangles C′D′E′

never occlude other triangles, since there are no triangles in the
half-space behind each of them. It is safe to place them in the end
of the list. By the same token, CDE are never occluded by any
triangle: they can be added to the front of the list. All that remains
is to place the remaining triangles AA′BB′ between CDE and
C′D′E′ (in some appropriate relative order). These triangles have
more complex occlusion relationships. Specifically, A′ may occlude
B and B′ may occlude A. Thus, we need to find an order such that
A′ is in front of B and B′ is in front of A. Multiple such orders
exist and in particular the following order satisfies all requirements:
CDEA′B′ABC′D′E′. When processing the list of 10 triangles
in this order, and from any viewpoint, back-face culling will select
exactly the 5 triangles that render the model sorted by depth.

To solve the general case automatically, we first construct a graph
that captures all occlusion relationships. This occlusion graph is
shown in figure 2 (bottom). Each node represents a triangle, and
there is an edge connecting a triangle X to a triangle Y if and only
if there is a viewpoint in which triangle X occludes triangle Y . We
seek a topological sort of the occlusion graph, i.e., an ordering in
which there are no back-edges [Skiena 2008]. There is such an order
whenever the directed graph is acyclic (i.e., it is a DAG), as is the

case of the occlusion graph in figure 2. Surprisingly, it is possible to
construct an ordering as described above for many simple objects.

3.2 A model requiring view-dependent selection

Unfortunately, in the general case, there may be cycles in the occlu-
sion graph, even with back-face culling, so that no topological sort
can be found. The simplest such case is shown in figure 3 (left). The
corresponding occlusion graph containing a cycle is shown under-
neath it. (We have omitted the back-facing triangles from the graph
to isolate this single cycle.)

The key observation is that H can only occlude F if the viewpoint is
inside the yellow region, and G can only occlude H if the viewpoint
is in the gray region. Furthermore, these regions can be separated by
a cutting plane p (the red dashed-line). Thus, we can solve the cycle
problem by creating an extra copy of H , as shown in figure 3 (bottom
right), and using the cutting plane p to select the copy of H to render
depending on which side of p the current viewpoint lies. This
culling operation, which is in addition to back-face culling, can be
performed very efficiently at run-time (see section 5).

4 Preprocessing algorithm

In this section, we describe an algorithm for automatically generat-
ing a depth-presorted triangle list for arbitrary input models. While
in this description we assume a back-to-front ordering is desired, the
algorithm can be trivially adjusted to create a front-to-back order.
Since our method focuses on static models, we assume intersecting
triangles have been split prior to invocation of our preprocessing
algorithm, so the input list contains no intersecting triangles. More-
over, we assume there is a way to depth-sort the triangles from any
viewpoint. In other words, we assume there are no single-viewpoint
visibility cycles in the input model. Self-intersections, which are
common in production models, must anyway be eliminated when
rendering with transparency. Additional preprocessing can break
cycles by splitting triangles when needed.

As in the example of section 3.1, we start by creating back-facing
duplicates for each input triangle in order to relax the occlusion
restrictions. Then, we compute the occlusion graph and generate
a preliminary ordering. If the graph has no cycles, a topological
sort completely solves the problem [Skiena 2008]. When there
are cycles, a good preliminary ordering is one that minimizes the
number of back-edges. Finding an optimal preliminary order is
equivalent to solving the minimum feedback arc-set problem, which
is NP-complete [Karp 1972]. Fortunately, the correctness of our
algorithm does not depend on optimality, and therefore we use a fast
heuristic that is detailed in section 4.2.



The final and most important preprocessing stage deals with back-
edges in the preliminary order. To do so, we scan the ordering from
start to finish, duplicating triangles and associating them with half-
spaces whenever we find a back-edge. This step follows along the
lines of the example of section 3.2, and is described below.

4.1 Duplicating triangles to work around back-edges

At each iteration, we process a graph node, moving along the pre-
liminary order from start to finish. Nodes that send no back-edges
can be safely ignored, but all back-edges must be dealt with. An
example will guide us through the algorithm:

Here, moving along the list from right to left, the current iteration
reaches a yellow node x with back-edges (in red) that must be
eliminated. (Edges that are not adjacent to x are irrelevant to this
iteration and have been omitted.) To remedy the two back-edges
pointing to the b∗ nodes, it often suffices to move x immediately
before b1. This works whenever there are no triangles between b1
and x with edges that point to x. Unfortunately, this is not the case
here and moving x gives rise to two new back-edges, coming from
the f∗:

To address this issue, we proceed as in section 3.2, and look for
a plane p that partitions the viewpoint space into two half-spaces.
Plane p must be such that the set of viewpoints from which x oc-
cludes the b∗ is contained in one of the half-spaces, whereas the set
of viewpoints from which the f∗ occlude x is contained in the other
half-space. An algorithm for finding such a plane (when it exists) is
given in section 4.1.1. With p, we can duplicate x as follows:

We then annotate the right copy of x with the half-space test for
p, so that the run-time algorithm described in section 5 will only
render this copy of x if the viewpoint is in the correct half-space.
The left copy of x does not need to be annotated with the plane.
Using Z-buffering with depth-test of less ensures that the fragments
generated by the left copy of x are shaded and stored if and only
if the right copy was skipped (Recall the back-to-front rendering
proceeds from right to left.) This fact allows us to avoid dealing
with multiple half-space tests in most practical cases.

Whenever we can find p that completely separates the viewpoints
associated to edges to the b∗ from those associated to edges from
the f∗, it is clear we can move on to the next offending node. How-
ever, such an ideal cutting plane may not exist. Thus, duplicating
x with p′ may introduce into the graph new back-edges emanating
from a subset of the f∗, as shown below:

In that case, we proceed to the next iteration and postpone handling
of new back-edges to the iteration that analyzes the nodes from
which they emanate (f1 in the example). It is therefore possible
for the left copy of a node that has been duplicated to be further
duplicated by the iteration that eventually processes it. As we noted
earlier, in general only the right copy is assigned a half-space test:
the Z-buffer deals with the left copy. Therefore, as we traverse the

list from right to left, each node copy is processed only once and is
assigned at most one plane.

It is important to notice that, as long as we manage to separate at
least one of the edges between f∗ and x from at least one of edges
between x and b∗, we have made progress. This is because we
have succeeded in reducing the total number of edges that must be
considered in the future. Since that number is finite, the algorithm
terminates. We now prove that, under mild assumptions, this is
always the case.

We focus on three nodes in the graph: the current node x, the
right-most node b to which x sends a back-edge, and the right-most
node f , between b and x, such that f sends a forward-edge to x. We
further assume that there exists a path from b to f , so that there is a
cycle in the graph (otherwise we could simply move b to the right
of x). Note that cycles of two nodes do not exist since there are no
self-intersecting triangles.

If the viewpoints of edge (x, b) can be separated from the view-
points of edge (f, x), we duplicate x as usual. If the viewpoints
of edge (x, b) can be separated from those of edge (b, f), we du-
plicate b instead. Finally, if the viewpoints of edge (b, f) can be
separated from those of edge (f, x), we duplicate node f . These
configurations are shown below:

At least one of these separations must be possible. Otherwise, there
would be a viewpoint from which the entire cycle is visible. This
would preclude the existence of a depth-sorted triangle ordering for
this viewpoint. But this contradicts our assumptions and therefore
completes the proof.

Note that if we follow this strategy that duplicates b by moving it
to the right, it is possible that b may have other back-edges and
require further duplication. In that case, additional planes will have
to be associated with the right copy of b. Fortunately, this must be
relatively rare since we have never observed it in practice.

4.1.1 Defining the cutting plane

Let us begin with a few definitions. We associate an occlusion
region Oi→j to each edge from node i to node j, defined as the set of
viewpoints from whence i occludes j. Thus, from viewpoints outside
of Oi→j , it is as if the edge did not exist. Similarly, we associate to
each node i (i.e., to each triangle instance) a rendering region Ei,
representing the set of viewpoints from which i is rendered. As nodes
are duplicated, rendering regions of new nodes are cumulatively
restricted to their associated half-spaces and can therefore become
rather small. Naturally, outside Ei or Ej , it is as if an edge between i
and j did not exist either. Therefore, each edge is relevant only inside
a reduced occlusion region

Ōi→j = Oi→j ∩ Ei ∩ Ej . (1)

With these definitions in hand, we can define the problem of finding
an appropriate cutting plane p. Let x be the current node being
analyzed. Assume x has back-edges pointing to a set of nodes b∗,
as well as forward-edges arriving from n distinct nodes f∗ that
lie between x and b1. We want to duplicate x, placing the new
copy to the left of b1. We hope to find a plane p that partitions the
edges among the two instances of x: back-edges go to the new (left)
instance, forward-edges remain with the current (right) instance.



Formally, the ideal plane p separates the regions

Rb =
⋃
b∈b∗

Ōx→b and Rf =
⋃

f∈f∗

Ōf→x. (2)

Since the ideal plane may not exist, we greedily look for a good al-
ternative. We start our search by separating the back-edge region Rb

from an empty forward-edge region

R
(0)
f = ∅. (3)

(The plane of x itself does the job.) Then, we try to progressively
add forward-edge regions to Rf by setting

R
(i)
f = R

(i−1)
f ∪ Ōfi→x (4)

if we can find a separating plane between Rb and R
(i−1)
f ∪ Ōfi→x.

Otherwise, we set

R
(i)
f = R

(i−1)
f (5)

and consider adding the occlusion region for the next forward-edge.
When we are done considering all forward-edges (in order, for
efficiency), we assign the last successful separating plane to the orig-
inal x, and move the edges not accounted for the final region R

(n)
f

to its new copy. These will be addressed when the time comes, by
duplicating the required subset of the f∗.

Although we can conceive of a situation where it is not possible to
separate any of the Ōfi→x from all of Rb, this has not happened in
any of our test cases. As shown in section 4.1, it is in fact always
possible to separate at least one Ōfi→x from at least one Ōx→bj ,
and we can rely on this fall-back procedure to ensure the termination
of the algorithm.

4.1.2 Computing the cutting plane

In this section, we detail the geometric operations used to efficiently
compute Rf and Rb, and ultimately the cutting plane p that separates
them. Computations involving convex-hulls, half-space intersec-
tions, and linear-programming are performed using the Qhull [Bar-
ber et al. 1996] and lp_solve [Berkelaar et al. 2004] libraries.

Intersection of viewpoint regions Determining the reduced oc-
clusion region Ōi→j amounts to finding the intersection between
three convex regions. To do so, we form the intersection between
all half-spaces defining each of Oi→j , Ei, and Ej . Since this in-
tersection is often empty, as an optimization that avoids the costly
half-space intersections, we first check if all vertices of either Ei

or Ej are on the outside of one of the planes bounding Oi→j . If so,
the intersection is empty.

Union of viewpoint regions We conservatively approximate
each region Rb and R

(i)
f by their convex-hulls. Note that this does

not compromise in finding the ideal cutting plane p, since any plane
that separates R(i)

f from Rb also separates their convex-hulls.

Cutting plane Given the convex-hulls of Rb and R
(i)
f , we use

linear programming to determine whether they intersect. If so, no
cutting plane can separate them and the algorithm proceeds without
updating R

(i)
f . Otherwise, we check if any of the bounding planes of

the two regions is suitable as a cutting plane (i.e., all of the vertices
of the other region lie on the opposite side of the plane). If that does
not produce a valid cutting plane, then planes are formed using all
possible combinations of vertices from one region and edges from
the other region. At least one of these planes will necessarily separate
the two convex-hulls and this becomes the candidate plane p.

Figure 4: Viewpoint partitioning optimization. To strike the proper
balance between memory consumption and run-time performance,
we generate independent depth-presorted triangle lists different
parts of the viewpoint space.

4.2 Viewpoint-space partitioning

In practice, we found that generating a single depth-presorted tri-
angle list for the entire range of viewpoints requires far too many
triangle duplications and leads to a list with many times as many tri-
angles as the input model. By dividing the space of viewpoints into a
small number of partitions and creating independent depth-presorted
triangle lists for each partition, we get a much better trade-off be-
tween total memory usage and run-time performance (see results in
section 6).

To divide the space of view points into partitions, we first enclose the
model in a bounding polyhedron with a given number of faces (we
have experimented with 4, 6, 16, and 64). Each partition is defined by
one of the polyhedron faces, and by the boundaries with neighboring
partitions, as in figure 4. By limiting the set of valid viewpoints to
lie outside the bounding polyhedron, we further reduce the number
of constraints in the occlusion graph. The preliminary order on
which the preprocessing algorithm operates is simply a depth-sorted
list of triangles relative to some viewpoint in the corresponding
partition. The only further modification is that when computing the
depth-presorted triangle list for each partition, all of the rendering
regions E∗ are further restricted to the corresponding partition. We
experimented with different orientations for the polyhedron and
obtained very similar results.

Depth-presorted lists for each partition can be computed simulta-
neously, leveraging the parallelism of multi-core CPUs. The lists
are concatenated into an index buffer with multiple segments. At
run-time, we issue a draw call that renders the segment of the index
buffer corresponding to the partition that contains the current view-
point. This can be easily accomplished by specifying the starting
buffer index and total number of triangles in the command that issues
the draw call. Thus, the CPU performs the coarse-level viewpoint
selection (which is trivial) and the GPU completes the fine-level
triangle selection, as described below.

5 Run-time selection algorithm

The task at run-time is to select those triangles from the depth-
presorted list that pass a half-space test. Recall each triangle t is
annotated by a test plane pt (a 4D vector storing the plane equation).
To decide whether to render a triangle t from viewpoint vxyz , we use
a single dot product, which is extremely efficient in modern GPUs:

dot
(
pt, [vxyz ,−1]

)
> 0. (6)

For triangles with no associated test plane, we use pt = [0, 0, 0,−1],
which causes the test to always succeed.

The test can be implemented in either the vertex, geometry, or frag-
ment shader programmable pipeline stages. Although each alterna-
tive has advantages and disadvantages depending on the application
and rendering configuration (see section 6), we favor the fragment
shader test:
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Option 1: Fragment shader (FS) The 4D plane vectors are kept
in a 32-bit 4-channel texture indexed by triangle ID. (Although in
practice the need has not arisen, it would be simple to encode an
entire linked-list of test-planes in the texture.) The FS issues the
lookup and performs the dot product. Since one dot product test is
performed per triangle fragment, this method may suffer in pixel-
bound scenes. Fortunately, the tests are inexpensive and the texture
access is coherent.

Option 2: Vertex shader (VS) The 4D plane vectors are sent as
vertex attributes. When the dot product test fails, the VS moves the
vertex to the viewpoint position so that it gets culled by the near
plane, otherwise it applies the standard vertex transformation. Since
all three vertices of each triangle perform the same exact test, the
result is consistent. The drawback of this approach is that triangles
can no longer share vertices, which may impact vertex bound scenes.

Option 3: Geometry shader (GS) The 4D plane vectors are kept
in a 32-bit 4-channel texture indexed by triangle ID. The GS emits
only the triangles that pass the dot product test. Although this is
the most natural implementation, the additional pipeline stage can
impact performance if the application is not already using a GS.

6 Results

In this section we discuss the performance and memory consumption
of our approach. All experiments were conducted on an Intel R©

Xeon R© 2.27GHz E5520 CPU with 12GB of RAM and an AMD
Radeon HD 6970 GPU. We used models with resolutions ranging
from 1,000 to 100,000 triangles, which we believe are representative
of the resolution and depth complexity of most static models found
in games. All renderings used alpha blending for proper semi-
transparency when rendering back-to-front as in figure 1. The run-
time performance results in figures 7, 8, and 9 are averaged over
256 viewpoints around the model and reported as ratios relative
to a baseline standard rendering, measured directly in clock ticks.
The baseline renders all input triangles in a order optimized for
vertex-cache locality (completely disregarding depth-sorting). For
example, if rendering a depth-sorted model with our method is twice
as expensive as the baseline rendering, we report the performance
ratio of two.

Segment partitioning Figure 5 shows the effect of increasing the
number of viewpoint partitions on the average number of triangles
per segment (i.e, that are actually processed by the draw-call at
run-time), as well as on the total memory consumption. The average
draw call size is reported as a ratio to the number of triangles in the
input triangle list. The total memory ratio is reported as a ratio to the

total memory used by a standard triangle list with no duplicated tri-
angles. The calculation assumes that each vertex contains a position,
normal, and texture coordinates. Note that although increasing the
number of partitions increases memory consumption, it reduces the
average segment size. It is important to note that the total memory
increase only happens for the transparent parts of models that have
any transparency effect at all. Furthermore, the vast majority of
memory in modern games is consumed by textures, with geometry
lagging far behind. We found that using 6 viewpoint partitions pro-
vides a reasonable trade-off for the models we tested. The amount of
memory used is not significantly higher than that of 4 partitions, but
there is a marked decrease in average segment size. This translates
to performance gains at rendering time. For the remainder of the
experiments in this section we used 6 viewpoint partitions.

Preprocessing Figure 6 shows the preprocessing time of our
method. Depending on model and number of triangles, it can take
anywhere between a few minutes to several hours to complete. The
computation of different segments was parallelized using multiple
CPU cores. While the preprocessing algorithm can be slow on large
input, it is important to point out that it only needs to be executed
once for each static model. Further optimizations could improve
the preprocessing time, but we instead concentrated our efforts on
optimizing for better run-time results, which is the ultimate goal.

Rendering approaches Figure 7 compares performance of the
three versions of our run-time selection procedure, each using a
different stage of the pipeline. The geometry shader option is sig-
nificantly slower due to the fact that it adds a new shading stage
to the rendering pipeline. Therefore, we only see this option being
viable when the rendering effect already requires a geometry shader,
in which case it would require simply adding the plane test to an
existing shader. The vertex shader and fragment shader versions are
significantly faster. For very low-resolution models, the rendering
is fill-bound, making the fragment shader option more costly. For
medium- and high-resolution models, however, the vertex process-
ing overhead of the vertex shader approach dominates. Thus, for
most practical model sizes, the fragment shader option is the most
efficient, with our algorithm being only 2–3× slower than baseline.

Overall performance We compared the overall performance of
our fragment shader algorithm with a selection of state-of-the-
art real-time depth-sorting algorithms: per-pixel dynamic linked
lists (LL) [Yang et al. 2010], stochastic transparency (ST) [Ender-
ton et al. 2010], and dual depth peeling (DDP) [Bavoil and Myers
2008]. ST is an approximate algorithm, while DDP and LL produce
exact results. (DDP uses occlusion queries to ensure that no further
passes are required and LL uses a sophisticated sorting operation
that is not available in legacy hardware.) Tests were run for each of
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Figure 7: Performance comparison between geometry shader, vertex shader, and fragment shader implementations.
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Figure 8: Performance comparison with related techniques using a screen resolution of 640×480.
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Figure 9: Performance comparison with related techniques using a screen resolution of 1280×720.

our models at 640×480 (figure 8) and 1280×720 (figure 9) screen
resolutions to demonstrate the different trade-offs involved. Our
algorithm is significantly faster than the alternatives, particularly at
high screen resolutions. Conversely, the advantage of our method is
even higher for smaller models. This is because the relative overhead
of increasing pixel count is negligible in our method, in contrast
to the effect of increasing input triangle count. Nevertheless, even
at low screen resolutions and with larger models, our method is
significantly faster than the alternatives. For our method to become
slower than the alternatives, it would require the combination of an
enormous amount of geometry with either small screen coverage (for
pixel based approaches) or very small maximum depth-complexity
(for depth-peeling approaches). Since GPUs are heavily optimized
for batch processing with few large index buffers, our simpler, single-
pass method is faster for practical scenarios of even up to several
million of transparent triangles.

Complex scene We tested our approach on a complex Room
scene (figure 10) consisting of a physical simulation with multiple
semi-transparent dragons interacting and colliding with one another.
We used a screen resolution of 1280×720 and 4X-MSAA. Refer to
the accompanying video for the entire animation sequence. Inter-
model depth-sorting was performed in the CPU using the models’
convex bounding volumes, which are also used for collision detec-
tion. This is trivial and fast for a small number of objects. Since
the convex bounding volumes are not allowed to inter-penetrate,
the sorting results are guaranteed to be correct. Standard rendering
(figure 10a) does not render the triangles of each model in depth
sorted order and therefore yields an incorrect transparency effect.
For example, the rear left foot of the dragon shown in the closeup
appears very prominently even though it is behind the body. As
expected, our method (figure 10b), LL, ST, and DDP generate cor-
rect results. We measured rendering time of the entire scene for a

varying number of dragons (figure 10c), resulting in a scene geomet-
ric complexity of 40,000 to 2,000,000 triangles (1 to 50 dragons).
Clearly, the performance is inversely proportional to the number of
dragons in the scene and our method is significantly faster compared
to other approaches. Furthermore, our method and DDP produce
exact results, which is not the case for ST and LL with MSAA.

Game scene To show that our method also applies to a more typi-
cal Game scene (figure 11), we created another experiment including
an animation sequence in which a character moves around a game
scene with multiple solid objects and a semi-transparent model. Re-
fer to the accompanying video for the entire animation sequence.
To get a sense of the performance implications of our approach on
these scenarios, we varied the resolution of our semi-transparent
model in order to present our performance results as a function of
the percentage of scene primitives that are semi-transparent. So, for
instance, if approximately 15% of the game’s primitives are semi-
transparent, the slowdown for having the triangles in sorted order
is just about 1.1×. On the other hand, in a more extreme scenario
where the semi-transparent objects start to dominate by having 50%
of the primitive count, the slowdown is a more significant 1.5×.

7 Conclusion

We presented a new algorithm for efficient, exact, depth-sorted
rendering of static triangle models. Our method produces a depth-
presorted triangle list in which each triangle is annotated by test
planes. These lists can be rendered in depth-sorted order using
a single draw call. Given a viewpoint, a simple run-time culling
procedure executed by the GPU rasterizes a subsequence of the
triangles that produce a depth-sorted rendering of the model relative
to that viewpoint. We show that this approach is significantly faster
than the alternative methods. The main limitations of our method is
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Figure 10: Results and performance comparison of the room scene with a screen resolution of 1280×720 and 4X-MSAA.
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Figure 11: Results and performance comparison of the game scene with a screen resolution of 1280×720 and 4X-MSAA.

that it is only suitable for static models, and for viewpoints outside
of a bounding polyhedron. However, we feel that there exists a wide
range of applications for which these limitations do not matter.

Finally, we believe that this novel selection based scheme using a
single draw call is a significant departure from existing methods,
most of which require either sorting or multipass rendering. We
believe that this direction is worth further investigation, particularly
on ways to handle deformable models. It would be interesting to
consider generating a set of orders that, in conjunction, allow for
a limited range of deformation at run-time. Alternatively, our fine-
grained triangle-level technique can be combined with coarse-level
dynamic sorting to enable animated characters with rigid parts.
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