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The problem

e Given F: Q CR" —» R", F(x) = (Fi(x),..., Fm(x))

(C* or C? or componentwise convex, pseudoconvex etc.)
e minimize F1(x) and Fy(x) and...and Fp(x) for x € Q
@ what is an optimum?

o x* € Q is Pareto optimum if:
y € Q, F(y) < F(x*) (componentwise) = F(y) = F(x*)
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FisC!and Q = R”

@ d is a descent direction at x if (VFi(x),d) <0i=1,...,m

@ the steepest descent direction?
ds solution of

min_max (VF;(x),d) + ||d||*/2 deR™

i=1,....m

@ m =1, scalar minimization, F : R" — R
we retrieve Cauchy direction, ds = —V F(x)
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Critical points

x is critical if Ad desc. dir.

equivalent conditions
e range(DF(x)) NRT, =0
e d;=0
e form=1, VF(x)=0

is a necessary condition for (Pareto) optimality
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Armijo rule (for a descent direction)

0<p8<1(B<1/2),
d desc. dir. at x

Fj(X + td) < Fj(x) + Ot max,':l,...,m(VFi(X)? d)
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Steepest Descent Method

steepest desc. dir. + backtracking w. Armijo rule
=Steepest desc. method for multiobjective optimization

generates {x, }= cluster points are critical

(additionally) F componentwise convex = convergence to a
critical point
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Projected Gradient

o Qis a closed convex set

@ search direction sol. of

min max (VFi(x),d) + ||d||?/2 x+deQ

i=1,....m

@ similar conv. results



Newton Method

Newton Method




Newton Method
Newton Method

e Fis(C?



Newton Method

Newton Method

° FisC?
@ quadratic model of F's variation



Newton Method
Newton Method

° FisC?
@ quadratic model of F's variation

Gx.i(d) = (VFi(x),d) + %(VZFi(x)d, d)



Newton Method
Newton Method

° FisC?
@ quadratic model of F's variation

Gx.i(d) = (VFi(x),d) + %(VZFi(x)d, d)

@ Newton direction,



Newton Method
Newton Method

° FisC?
@ quadratic model of F's variation

Gx.i(d) = (VFi(x),d) + %(VZFi(x)d, d)

o Newton direction, (V2F; positive def. for i = 1,..., m)



Newton Method
Newton Method

° FisC?
@ quadratic model of F's variation

Gx.i(d) = (VFi(x),d) + %(VZFi(x)d, d)

o Newton direction, (V2F; positive def. for i = 1,..., m)
dy sol. of

min max gx,i(d) deR”

i=1,....m



Newton Method
Newton Method

° FisC?
@ quadratic model of F's variation

Gx.i(d) = (VFi(x),d) + %(VZFi(x)d, d)

o Newton direction, (V2F; positive def. for i = 1,..., m)
dy sol. of

min max gx,i(d) deR”

i=1,....m

@ this problem is unbounded?



Newton Method
Newton Method

° FisC?
@ quadratic model of F's variation

Gx.i(d) = (VFi(x),d) + %(VZFi(x)d, d)

o Newton direction, (V2F; positive def. for i = 1,..., m)
dy sol. of

min max gx,i(d) deR”

i=1,....m
@ this problem is unbounded?
use

min _max qx,i(d) + ul|d|]?/2 deR"

=1,...,



Newton Method
Newton Method

° FisC?
@ quadratic model of F's variation

Gx.i(d) = (VFi(x),d) + %(VZFi(x)d, d)

o Newton direction, (V2F; positive def. for i = 1,..., m)
dy sol. of

min max gx,i(d) deR”

i=1,....m

@ this problem is unbounded?
use

min _max qx,i(d) + ul|d|]?/2 deR"

=1,...,

for a “large” p >0,
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° FisC?
@ quadratic model of F's variation

Gx.i(d) = (VFi(x),d) + %(VZFi(x)d, d)

o Newton direction, (V2F; positive def. for i = 1,..., m)
dy sol. of

min max gx,i(d) deR”

i=1,....m

@ this problem is unbounded?
use

min _max qx,i(d) + ul|d|]?/2 deR"

=1,...,

for a “large” p > 0, not “too large”
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Armijo rule for quad. models (in multiob. opt.)

d desc. dir at x
o 0 = maxj=1,. mAqx,i(d)
o Fi(x+td) < Fi(x)+pBthfori=1,....m



Extensions

prox. for multiob. optim.

Xky1 € argmin F(x) 4+ w|x — x||?/2, weR™ w >0
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Extensions
Extension to vector optim.

Fy) < F(x) <= F(x) = F(y) e RY
@ K closed convex cone
° F(y) 2k F(x) <= F(x)—F(y) e K
e x*is K-optimum if F(y) <x F(x*) = F(y) = F(x*)

steepest descent OK
Newton OK
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Open Problems

Some open problems

Duality in multiobjective optim.
Augmented Lagrangian methods
Decomposition methods

secant methods
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