RECURRENCE FOR THE WIND-TREE MODEL

A. AVILA AND P. HUBERT

Abstract. In this paper, we give a geometric criterion ensuring the recurrence of the vertical flow on \mathbb{Z}^d covers of compact translation surfaces ($d \geq 2$). We prove that the linear flow in the windtree model is recurrent for every pair of parameters and almost every direction.

1. Introduction

Very little is known on the dynamics of the linear flows on non compact translation surfaces. Some results exist for classes of examples. “Periodic” translation surfaces form a natural class actively studied. In this paper, we consider a translation surface \hat{X} which is a ramified cover over a compact translation surface X, the covering group being \mathbb{Z}^d ($d \geq 1$). Let Σ be the finite set of branched points. Since the intersection form is non degenerate between $H_1(X,\Sigma,\mathbb{Z})$ and $H_1(X \setminus \Sigma,\mathbb{Z})$, every cover is defined by a d-uple of independent elements $\Gamma = (\gamma_1, \ldots, \gamma_d)$ in the group of relative homology $H_1(X,\Sigma,\mathbb{Z})$. The d-uple Γ is called the cocycle defining the covering \hat{X}. The holonomy of an element of $H_1(X,\Sigma,\mathbb{Z})$ is $\int_{\gamma} \omega$ where ω is the holomorphic 1–form defining the translation surface X. A necessary condition for recurrence is the so called no drift condition

$$\text{hol} (\gamma_i) = 0, \text{ for } i = 1 \ldots d.$$

The Lebesgue measure is invariant by the linear flow on \hat{X}, it is an infinite measure. For $d = 1$ under the no drift condition, recurrence of the linear flow is a consequence of general principles: ergodicity of the flow on X implies recurrence on \hat{X}. This is not true in dimension $d \geq 2$. For translation surfaces, the first counter example is due to Delecroix [De].

In this paper, we give a geometric criterion ensuring recurrence for the linear flow on a \mathbb{Z}^2 cover of a compact translation surface (see sections 3 and 4). We apply this criterion to periodic versions of the wind-tree model introduced by Ehrenfest in 1912 ([EhEh]). The model is the following: a point moves in the plane and collides with rectangular scatterers with the usual law of reflexion. The scatterers are identical rectangular obstacles located periodically along a square lattice on the plane, one obstacle centered at each point of \mathbb{Z}^2. The scatterers are rectangles of size (a,b), with $0 < a < 1$, $0 < b < 1$. We name the subset of the plane obtained by removing the
obstacles the billiard table $T(a, b)$. Polygonal billiard is one of the main motivation to develop the theory of translation surfaces. Thus, it is important to understand the dynamics in this situation. The phase space splits into a family of invariant surfaces since the angles at the boundary of $T(a, b)$ are multiples of $\pi/2$. We prove

Theorem 1. For every $(a, b) \in (0, 1) \times (0, 1)$, the billiard flow in the table $T_{a, b}$ is recurrent for almost every direction θ.

Using the Katok-Zemliakov’s construction, we replace the billiard flow in $T(a, b)$ by the linear flow on a non compact translation surface $X_{a, b}^\infty$. The surface $X_{a, b}^\infty$ is a cover of a genus 5 translation surface $X_{a, b}$ (see [DHL] for details). That’s why we can apply the geometric criterion proven in section 4. Theorem 1 is a generalization of a result in [HLT]. Our result is optimal for two different reasons. For all rational parameters (a, b) there exists a set of positive Hausdorff dimension of non recurrent directions on $X_{a, b}^\infty$ (see [De]). Moreover ergodicity is false by a result of Frączek and Ulcigrai (see [FU]).

1.1. **Outline of the paper.** In section 3, we prove a general criterion for recurrence for linear flows on \mathbb{Z}^2 covers of compact translation surfaces. In section 4, we derive a geometric criterion for recurrence. In section 5, we check this criterion for the windtree model for generic parameters. This relies on a careful analysis of the existence of “good” cylinders. A crucial fact is that the surface $X_{a, b}$ is a cover of an L shaped surface $L_{a, b}$. In section 6, we prove that the result is in fact true for every parameter. A key point is McMullen’s classification of $SL_2(\mathbb{R})$ invariant measures in the stratum $\mathcal{H}(2)$ (see [Mc]).

2. **Background**

For general references on translation surfaces we refer the reader to the survey of A. Zorich [Zo] or the notes of M. Viana [Vi].

A **translation surface** is a surface which can be obtained by edge-to-edge gluing of polygons in the plane using translations only. Such a surface is endowed with a flat metric (the one from \mathbb{R}^2) and canonic directions. There is a one to one correspondence between translation surfaces and compact Riemann surfaces equipped with a non-zero holomorphic 1–form. There is a canonic vertical direction in each translation surface and we refer to the flow in this direction as the **vertical flow**.

A **cylinder** on a translation surface is a maximal open annulus filled by homotopic simple closed geodesics. The direction of a cylinder is the direction of these geodesics. A cylinder is isometric to the product of an open interval and a circle. The core curve of a cylinder is the geodesic projecting to the middle of the interval.

The moduli space of translation surfaces of genus g is stratified according to the degrees of zeros of the corresponding 1-forms. If $\alpha = (\alpha_1, ..., \alpha_s)$ is a
partition of the even number \(2g - 2\), \(\mathcal{H}(\alpha)\) denotes the stratum consisting of 1-forms with zeros of degrees \(\alpha_1, \ldots, \alpha_s\), on genus \(g\)-Riemann surfaces. We denote by \(\mathcal{H}^{(1)}(\alpha) \subset \mathcal{H}(\alpha)\) the codimension 1 subspace which consists of area 1 translation surfaces.

There is a natural action of \(\text{SL}_2(\mathbb{R})\) on strata \(\mathcal{H}(\alpha)\) coming from the linear action of \(\text{SL}(2, \mathbb{R})\) on \(\mathbb{R}^2\). The Teichmüller geodesic flow on \(\mathcal{H}_g\) is the action of the diagonal matrices \(g_t = \begin{pmatrix} e^t & 0 \\ 0 & e^{-t} \end{pmatrix}\). We denote by \(\mathcal{M}_g\) the moduli space \(\mathcal{M}_g\) of closed compact Riemann surfaces of genus \(g\). The image of the orbits \((g_t \cdot (X, \omega))_t\) in \(\mathcal{M}_g\) are geodesic with respect to the Teichmüller metric. Each stratum \(\mathcal{H}_g(\alpha)\) carries a natural Lebesgue measure, invariant under the action of \(\text{SL}(2, \mathbb{R})\). Moreover, this action preserves the area and hence \(\mathcal{H}^{(1)}(\alpha)\). H. Masur [Ma1] and independently W. Veech [Ve1] proved that on each component of a normalized stratum \(\mathcal{H}^{(1)}(\alpha)\) the total mass of the Lebesgue measure is finite and the geodesic flow acts ergodically with respect to this measure. Another important one parameter flow on \(\mathcal{H}(\alpha)\) is the horocycle flow given by the action of \(h_s = \begin{pmatrix} 1 & s \\ 0 & 1 \end{pmatrix}\).

Stabilizers for the action of \(\text{SL}(2, \mathbb{R})\) in the stratum \(\mathcal{H}(\alpha)\), called Veech groups, are discrete subgroups of \(\text{SL}_2(\mathbb{R})\). In exceptional cases are lattices (i.e. finite-covolume subgroups) in \(\text{SL}_2(\mathbb{R})\) (see [Ve1]), though they are never cocompact. Closed compact translation surfaces with a lattice Veech group are exactly those whose \(\text{SL}_2(\mathbb{R})\)-orbit is closed in the corresponding stratum. They are called Veech surfaces. Their orbits project to Teichmüller curves in the moduli space \(\mathcal{M}_g\).

The stratum \(\mathcal{H}(2)\) is connected and is the best understood in higher genus. It was proven that the Teichmüller curves are generated by \(L\) shaped surfaces of the form \(L(a, b)\) (see figure 1).

\[
\begin{array}{ccc}
(0, 0) & (1 - a, 0) & (1, 0) \\
(0, 1) & (0, 1 - b) & \\
(0, 1)
\end{array}
\]

Figure 1. The surface \(L_{a, b}\): opposite sides are identified

In his fundamental work, C. McMullen [Mc] proved a complete classification theorem for \(\text{SL}_2(\mathbb{R})\)-invariant measures and closed invariant sets in genus 2. The only \(\text{SL}(2, \mathbb{R})\)-invariant irreducible closed subsets of \(\mathcal{H}(2)\) are the Teichmüller curves and the whole stratum. The only ergodic \(\text{SL}(2, \mathbb{R})\)-invariant probability measures are the Haar measure carried by Teichmüller
curves and the Lebesgue measure on the stratum. Following McMullen, these measures will be called Euclidean measures.

Let \(g \geq 2 \). The Hodge bundle \(E_g \) is the real vector bundle of dimension \(2g \) over \(\mathcal{M}_g \) where the fiber over \(X \in \mathcal{M}_g \) is the real cohomology \(H^1(X; \mathbb{R}) \). Each fibre \(H^1(X; \mathbb{R}) \) has a natural lattice \(H^1(X; \mathbb{Z}) \) which allows identification of nearby fibers and definition of the Gauss-Manin (flat) connection. Since \(\mathbb{Z}^d \) covers are defined by relative cycles, we will also consider the extended Hodge bundle of fiber \(H_1(X, \Sigma, \mathbb{R}) \). The holonomy along the Teichmüller geodesic flow provides a cocycle called the Kontsevich-Zorich cocycle. Given a Teichmüller geodesic starting from a translation surface \(X \) and \(\gamma \in H_1(X, \Sigma, \mathbb{Z}) \) we denote by \(G_t(\gamma) \in H_1(g_t(X), \Sigma, \mathbb{Z}) \) the value of the Kontsevich-Zorich cocycle after time \(t \). When \(\Gamma = (\gamma_1, \ldots, \gamma_d) \) is a vector with coordinates in \(H_1(X, \Sigma, \mathbb{Z}) \), \(G_t(\Gamma) \) is the vector \((G_t(\gamma_1), \ldots, G_t(\gamma_d)) \).

In the sequel, we will only work in local coordinates, thus homology (resp. cohomology) can be locally identified. Given a simply connected small open set \(U \) in a stratum, the Kontsevich-Zorich cocycle tells us how a cycle has been modified when a Teichmüller geodesics comes back in \(U \).

3. Recurrence criterion

We recall that a \(\mathbb{Z}^d \) cover of a translation surface \(X \) is given by a \(d \)-uple of independent elements in \(H_1(X, \Sigma, \mathbb{Z}) \). Let \(\Gamma \) be such a \(d \)-uple in \(H_1(X, \Sigma, \mathbb{Z}) \). We denote by \(X_\Gamma \) the cover of \(X \) associated to \(\Gamma \).

Definition 1. Let \(X \) be a compact translation surface, \(\Gamma \) a cocycle, \(X_\Gamma \) the \(\mathbb{Z}^d \) cover of \(X \) associated to \(\Gamma \) and \(\hat{\phi}_t \) the vertical flow on \(X_\Gamma \). A real number \(C > 1 \) we say that \(X_\Gamma \) is \(C \)-recurrent if there is an embedded rectangle \(R = I \times [0, L) \) in \(X \) of measure larger than \(1/C \) with \(L > 1/C \) such that if \(x \in R \) then for every preimage \(\hat{x} \in X_\Gamma \) we have:

- \(\hat{x} \in X_\Gamma \) and \(\hat{\phi}_L(\hat{x}) \) belong to the same horizontal leaf
- the distance \(d_H \) along the horizontal leaf between \(\hat{x} \) and \(\hat{\phi}_L(\hat{x}) \) satisfies
 \[
 d_H(\hat{x}, \hat{\phi}_L(\hat{x})) < C.
 \]

Proposition 1. Let \(X \) be a compact translation surface, \(\Gamma \) a cocycle and \(C > 1 \). Assume that there exists a sequence of real numbers \((t_n) \) tending to infinity such that \(g_{t_n}(X)_{\Gamma_n} \) is \(C \)-recurrent for every \(n \) where \(\Gamma_n = G_{t_n}(\Gamma) \). Then the vertical flow is recurrent on \(X_\Gamma \) if the flow \(\phi_t \) is ergodic on \(X \).

Proof. We denote by \(\tilde{R}_n \) the rectangle which is \(C \)-recurrent for \(\Gamma_n \) on \(g_{t_n}(X) \) and by \(R_n \) its preimage by \(g_{t_n} \). Teichmüller flow in backward direction contracts horizontals and expands verticals. Thus, the length \(L_n \) of \(R_n \) is at least \(e^{t_n}/C \) and its width is at most \(e^{-t_n}/C \). Therefore, if \(x \in X \) belongs to \(R_n \), we have \(d_H(\hat{x}, \hat{\phi}_{L_n}(\hat{x})) < C e^{-t_n} \). Thus the vertical trajectory of a point which belongs to \(R_n \) for infinitely many \(n \) is recurrent.

Lemma 1. Almost every point \(x \in X \) belongs to \(R_n \) for infinitely many \(n \).
Proof. The width of the rectangle R_n is at most e^{-t_n}/C. We consider a subsequence of real numbers (still denoted by (t_n)) such that $\sum_{n=0}^{\infty} e^{-t_n}$ is finite.

Denote by

$$\Omega = \{x \in X \text{ such that, for infinitely many } n, \ x \in R_n\}. $$

We have $\lambda(\Omega) \geq 1/C$ since $\lambda(R_n) = \lambda(R) > C$. Let us prove that Ω is ϕ_t invariant mod 0 for every $t > 0$. This will prove that $\lambda(\Omega) = 1$. For $t > 0$ fixed, the t-top of R_n is the set $A_n = I \times [e^{t_n}L_n - 2t, e^{t_n}L_n]$ where L_n is the length of \tilde{R}_n. This set is defined for n large enough. As $\sum_{n=0}^{\infty} e^{-t_n}$ is finite, by Borel-Cantelli Lemma, almost every $x \in X$ belongs to a finite number of t-top of the rectangles R_n. Take $x \in \Omega$ and in this set of full measure. Consequently, for infinitely many n, x belongs to $R_n \setminus A_n$. Thus $\phi_t(x)$ belongs to infinitely many rectangles R_n which means that $\phi_t(x) \in \Omega$. This ends the proof of the lemma.

The proof of Proposition 1 is now complete. □

Remark 1. This proposition is an avatar of Masur’s criterion for unique ergodicity on compact translation surfaces [Ma2].

4. Geometric criterion for recurrence

Through this section, \mathcal{L} will be a closed g_t invariant locus and \mathcal{B} a locally flat continuous linear subbundle of the extended Hodge bundle over \mathcal{L}.

Remark 2. Since \mathcal{L} is g_t-invariant and \mathcal{B} is locally flat, \mathcal{B} is invariant under the Kontsevich-Zorich cocycle.

Definition 2. Fix $X \in \mathcal{L}$. A cylinder $\mathcal{C} \subset X$ is said to be \mathcal{B}-good if $i(m(\mathcal{C}), \gamma) = 0$ for all $\gamma \in \mathcal{B}_X$.

Now we give a strong relation between the existence of good cylinders and the C-recurrence property.

Lemma 2. Let X in \mathcal{L} with a vertical \mathcal{B}-good cylinder. There exists a neighborhood $U \subset \mathcal{L}$ of X and a $C > 0$ such that every surface $Y \in U$ is C-recurrent for every Γ with coordinates in $\mathcal{B}_Y \cap H_1(Y, \Sigma, \mathbb{Z})$.

Proof. Assume that X contains a \mathcal{B}-good vertical cylinder of area at least $2C$ and width at most $1/2C$. Cylinders are stable under small perturbations in the strata of abelian differentials. Thus, in a neighborhood of X, there is a metric cylinder whose core curve is homologous to $m(\mathcal{C})$ and direction close to be vertical. In a nearby direction, this cylinder contains a rectangle which takes up an arbitrary large proportion of the cylinder (see figure 2).
We fix U a neighborhood of X small enough so that this cylinder contains a rectangle whose sides are horizontal and vertical, area is at least C and width at most $1/C$. Let $Y \in U$ and Γ with coordinates in \mathcal{B}_Y. The previous part of the argument provides on Y a cylinder $\mathcal{C}(Y)$ and a rectangle $\mathcal{R}(Y)$. Denote by L the vertical length of the rectangle $\mathcal{R}(Y)$. Note that $\mathcal{C}(Y)$ is \mathcal{B}-good by local flatness, so the lift of the cylinder $\mathcal{C}(Y)$ in the cover Y_Γ is a union of cylinders isometric to $\mathcal{C}(Y)$. Moreover, if $\hat{x} \in \mathcal{R}(Y)$, then $d(\hat{x}, \hat{\phi}_L(\hat{x}) < C$. □

Figure 2. cylinder containing a rectangle.

Proposition 2. Let X in \mathcal{L} with a vertical \mathcal{B}-good cylinder. Let $Y \in \mathcal{L}$ and Γ be a d-uple of elements in $\mathcal{B}_Y \cap H_1(Y, \Sigma, \mathbb{Z})$. If the positive g_t orbits of Y accumulates on X then the vertical flow is recurrent on Y_Γ.

Proof. Denote by (t_n) the subsequence such that $g_{t_n}(Y)$ tends to X and call $\Gamma_n = G_{t_n}(\Gamma)$. By Masur’s criterion, the vertical flow on Y is ergodic. Since $g_{t_n}(Y)$ tends to X and B is invariant by the Kontsevich Zorich cocycle, by Lemma 2, for n large enough, $g_{t_n}(Y)$ is C recurrent and then by Proposition 1 the vertical flow is recurrent on Y_Γ. □

5. Recurrence for the wind-tree model: almost everywhere statement

In this section, we check the geometric criterion for the wind-tree model.

5.1. Summary of results on the wind-tree model. We mention here results from [DHL]. The billiard flow is described by the linear flow on a non compact translation surface $X_{a,b}^\infty$. The surface $X_{a,b}^\infty$ is a \mathbb{Z}^2 cover of a genus 5 surface $X_{a,b}$ which is itself a non ramified cover of degree 4 of of a
L shaped surface $L_{a,b}$ in the stratum $\mathcal{H}(2)$. Denote by \mathcal{L} the locus of these intermediate covers.

The Klein group K acts on $X_{a,b}$ by translations (see figure 3). This action induces a splitting of $H_1(X_{a,b}, \mathbb{Z})$ which is $SL_2(\mathbb{R})$ invariant.

Denote by τ_h, τ_v and $\tau_h\tau_v$ the non trivial elements of K. τ_h (resp. τ_v) permutes the fundamental domains horizontally (resp. vertically).

We have:

$$H_1(X_{a,b}, \mathbb{R}) = E^{++} \oplus E^{+-} \oplus E^{-+} \oplus E^{--}$$

where E^{++} is the vector space invariant by τ_h and τ_v, $E^{+-}(\mathbb{Z})$ the vector space invariant by τ_h and anti-invariant by τ_v, etc. This decomposition respects the symplectic structure. The coordinates of the \mathbb{Z}^2 cocycle defining $X_{a,b}$ belong to $E^{+-} \oplus E^{-+}$. The invariant vector space by $\tau_h\tau_v$ is $E^{++} \oplus E^{--}$. The quotient surface $X_{a,b}/\tau_h\tau_v$ is a hyperelliptic surface (it belongs to the hyperelliptic locus of the non hyperelliptic component of the stratum $\mathcal{H}(2,2)$).

On the surface $L_{a,b}$ two Weierstrass points are distinguished by the cocycle defining $X_{a,b}^\infty$ and are denoted by E and F (see figure 4)
5.2. Good cylinders in the windtree model. We now give a refined version of Lemma 10 of [HLT] in the adequate language for our purpose.

Lemma 3. The lift to $X_{a,b}$ of a cylinder in $L_{a,b}$ whose core curve contains E and F is the union of two cylinders which are homologous. The homology class of the core curve of each cylinder belongs to E^{++}.

Proof. Since E and F are Weierstrass points on $L_{a,b}$, every trajectory from E to F closes up in $L_{a,b}$. The length of the closed curve γ is twice the length of the segment EF. In [HLT] Lemma 10 a symmetry argument shows that γ lifts in $X_{a,b}^\infty$ to the core of a cylinder whose length is twice the length of γ. The proof is explained in the language of billiards. The symmetry argument shows that in the billiard table $T_{a,b}$, the trajectory is symmetric with respect to a lattice point. It contains two preimages of E (and F) with opposite vector. We now translate this argument in $X_{a,b}$. Let $\hat{\gamma}$ be a preimage of γ in $X_{a,b}$ containing \hat{E} a preimage of E. The previous argument means that $\hat{\gamma}$ contains \hat{E} and $\tau_h \tau_v(\hat{E})$. This implies that the homology class of $\hat{\gamma}$ is $\tau_h \tau_v$-invariant. Thus, it belongs to $E^{++} \oplus E^{--}$. The same is true for the other preimage of γ denoted by $\hat{\gamma}'$. The vector space $E^{++} \oplus E^{--}$ is identified with $H_1(X_{a,b}/\tau_h \tau_v, \mathbb{R})$ (it is the $\tau_h \tau_v$-invariant part of $H_1(X_{a,b}, \mathbb{R})$). Denote by $\hat{\gamma}$ and $\hat{\gamma}'$ the projections of $\hat{\gamma}$ and $\hat{\gamma}'$ in $X_{a,b}/\tau_h \tau_v$.

We now prove that $\hat{\gamma}$ and $\hat{\gamma}'$ are equal in $H_1(X_{a,b}/\tau_h \tau_v, \mathbb{R})$. A simple calculation shows that the Weierstrass points in $X_{a,b}/\tau_h \tau_v$ are the preimages of the Weierstrass points A, B, C, D in $L_{a,b}$ (see figure 5).

In $L_{a,b}$ the curve γ contains the two Weierstrass points E and F thus it does not contain any other Weierstrass point. Therefore $\hat{\gamma}$ and $\hat{\gamma}'$ are not fixed by the hyperelliptic involution ι in $X_{a,b}/\tau_h \tau_v$. Thus, we have $\iota(\hat{\gamma}) = -\hat{\gamma}'$. This implies that $\hat{\gamma}$ and $\hat{\gamma}'$ are homologous in $X_{a,b}/\tau_h \tau_v$. Consequently $\hat{\gamma}$ and $\hat{\gamma}'$ are homologous in $X_{a,b}$. We also have

$$\hat{\gamma}' = \tau_h(\hat{\gamma}) = \tau_v(\hat{\gamma}).$$

This yields that the homology class of $\hat{\gamma}$ is τ_h and τ_v invariant thus it belongs to E^{++}. □
Corollary 1. Any lift to $X_{a,b}$ of a cylinder in $L_{a,b}$ whose core curve contains E and F is a $E^+ \oplus E^- \oplus E^{--}$ good cylinder.

Proof. Lemma 3 shows that the core curve of such a cylinder belongs to E^{++} which is the symplectic orthocomplement of $E^+ \oplus E^- \oplus E^{--}$. This means that this cylinder is $E^+ \oplus E^- \oplus E^{--}$ good on $X_{a,b}$.

5.3. Almost everywhere statement. We now apply the geometric criterion to prove an intermediate statement. We prove recurrence of the cocycle for almost every surface in \mathcal{L} with respect to any $SL_2(\mathbb{R})$ ergodic invariant probability measure.

Proposition 3. Let C be a connected closed invariant subspace of \mathcal{L}, μ be its Euclidean measure and let X be in C. Let U be a neighborhood in C of X. Denote by Γ a cocycle with values in $E^+ \oplus E^- \oplus E^{--}$. For μ almost every $Y \in U$ the vertical flow is recurrent in Y_Γ.

Remark 3. This applies to the windtree model since the cocycle defining it belongs to $E^+ \oplus E^{+-}$.

We need the following lemma.

Lemma 4. On every L-shaped surface there is a cylinder with Weierstrass points E and F in its core curve.

Proof. We take coordinates on the L-shaped surface as in figure 6. We denote by \mathcal{R} the rectangle $D_0D_1D'_0D'_1$. We unfold this rectangle along the vertical side containing D_1 and F_1. We obtain points F_1, \ldots, F_n with the same y-coordinate in the complex plane. In the horizontal strip ending at the vertical segment $D_0D'_0$, there is no singularity except on the horizontal boundaries. We now consider the cone bounded by the lines ED_0 and ED_1. As the slope of ED_0 is larger than the slope of ED_1, every point in \mathcal{R} has a preimage in the strip contained in the cone. Thus there is a segment joining E to each point of \mathcal{R} and thus to F.
Proof of Proposition 3. Fix μ a $SL_2(\mathbb{R})$ ergodic invariant probability measure on \mathcal{L} and Y a generic surface for μ. By McMullen’s classification, the support of every ergodic measure in $\mathcal{H}(2)$ contains a L-shaped surface. Thus the support of μ contains a surface $X_{a,b}$ for some $(a, b) \in (0, 1)^2$. By Corollary 1 and Lemma 4, the surface $X_{a,b}$ contains a $E^{++} \oplus E^{-+} \oplus E^{--}$ good cylinder. As Y is a generic point, its orbit under the geodesic flow accumulates to $X_{a,b}$. Thus by Proposition 2, the vertical flow is recurrent on Y.

6. Everywhere statement

First fix some notations. Our convention for subgroups and elements in $SL_2(\mathbb{R})$ is the following: the rotation of angle θ is denoted by r_θ, the subgroup P is the group of upper triangular matrices is K the orthogonal group. We recall that the geodesic flow is the one parameter flow $g_t = \begin{pmatrix} e^t & 0 \\ 0 & e^{-t} \end{pmatrix}$, $t \in \mathbb{R}$, the horocycle flow is the one parameter flow $h_s = \begin{pmatrix} 1 & s \\ 0 & 1 \end{pmatrix}$, $s \in \mathbb{R}$.

Let \mathcal{L} be the locus defined in § 5.1, let X be a translation surface belonging to \mathcal{L} and Ω be a set of positive measure of the unit circle. We denote by ν the normalized Lebesgue measure on Ω. We first prove some useful lemmas.

Lemma 5. Every limit point ν_∞ of the family of probabilities

$$\frac{1}{T} \int_0^T g_t \nu$$

is a probability which is P invariant.
Proof. Every limit of $g_t\nu$ is a probability measure in \mathcal{L}. This is a direct consequence of the results of Eskin-Masur [EM] and Athreya [At]. No mass can escape to infinity.

Claim 1. Any limit of $g_t\nu$ is h_s invariant.

The proof of the claim is an adaptation of Eskin-Marklof-Morris Lemma 7.3 (see [EMM]). We fix a sequence t_i such that $g_{t_i}\nu$ tends to μ. Fix $s \in \mathbb{R}$, a matrix calculation proves that there exists a sequence (θ_j) tending to zero such that $g_{t_i}r_{\theta_j}g_{t_i}^{-1}$ tends to h_s. Let us prove that $g_{t_i}r_{\theta_j}g_{t_i}^{-1}g_{t_i}\nu - g_{t_i}\nu$ tends to zero as j tends to infinity. Passing to the limit this will prove that μ is h_s invariant. We use the fact that ν is absolutely continuous with respect to Lebesgue measure on the circle. This means that there is a non negative measurable function ϕ such that

$$d\nu = \phi d\theta \quad \text{and} \quad \int_{S^1} \phi d\theta = 1.$$

Let f be a bounded continuous function on \mathcal{L},

$$\Delta_j = \int_{\mathcal{L}} f(M)g_{t_i}r_{\theta_j}g_{t_i}^{-1}g_{t_i}\nu - \int_{\mathcal{L}} f(M)g_{t_i}\nu = \int_{\mathcal{L}} f(M)g_{t_i}(r_{\theta_j}d\nu - d\nu) =$$

$$\int_{\mathcal{L}} f(g_{t_i}^{-1}M)(\phi \circ r_{\theta_j} - \phi)d\theta.$$

Thus

$$|\Delta_j| \leq ||f||_\infty ||\phi \circ r_{\theta_j} - \phi||_1$$

where $|| \cdot ||_\infty$ is the infinity norm on bounded continuous functions on \mathcal{L} and $|| \cdot ||_1$ is L^1 norm in the unit circle with respect to Lebesgue measure. For every $\phi \in L^1$, $||\phi \circ r_{\theta_j} - \phi||_1$ tends to zero as j tends to infinity. Consequently (Δ_j) tends to zero as j tends to infinity which proves the claim.

Now ν_∞ is obtained as a Cesaro mean. Thus it is g_t invariant. Moreover, by the claim, it is a convex combination of h_s invariant measures thus it is h_s invariant. This means that it is P invariant.

Consequently the support Σ of ν_∞ is P invariant.

Lemma 6. The set $K\Sigma$ is G invariant. The set Σ contains a Teichmüller curve.

Proof. A direct calculation shows that the set $K\Sigma$ is $\text{SL}_2(\mathbb{R})$ invariant since the set Σ is P invariant. By McMullen classification, $K\Sigma$ contains a Teichmüller curve \mathcal{M}. Thus $\Sigma \cap \mathcal{M}$ is a closed P invariant set and contained in the homogeneous space \mathcal{M}. Thus, by Ratner’s theorem, $\Sigma \cap \mathcal{M} = \mathcal{M}$.

We now prove that:
Lemma 7. For every surface X in the locus \mathcal{L}, for almost every θ in Ω, the set of limit points of $g_t r_\theta X$ contains a Teichmüller curve.

Proof. Assume that there is a set of positive Lebesgue measure Ω' on the circle which does not satisfy the conclusion of the lemma. For every Teichmüller curve M, fix a point x_M with dense g_t orbit in M. This point x_M does not belong to the omega-limit set of $g_t r_\theta X$ for θ in Ω'. Restricting Ω', we can obtain an open set U of \mathcal{L} containing x_M for all M such that $g_t r_\theta X$ does not enters U for $\theta \in \Omega'$ and t large enough. Restricting Ω' further, one can assume that for $t \geq T_M$ $g_t r_\theta X$ does not enters U.

We perform the same construction as in Lemma 5 replacing Ω by Ω'. We fix a limiting measure ν'_∞ obtained by this process. By construction of ν'_∞, $\nu'_\infty U = 0$. This is a contradiction with Lemma 6 since U intersects every Teichmüller curve. \hfill \square

We now complete the proof of Theorem 1. Let $X = X_{a,b}$ be a surface obtained by the windtree construction for some parameters (a, b). By Lemma 7, for almost every θ, the limit points of $g_t r_\theta X$ contains a Teichmüller curve. By McMullen classification of Teichmüller curves in genus 2 every Teichmüller curve is generated by a L shaped polygon L. Thus L is a limit point of $g_t r_\theta X$. L contains a $E^+ \oplus E^- \oplus E^-$ good cylinder by Corollary 1. As it is explained in § 5.1 the flow in $X_\infty^{a,b}$ is defined by a cocycle over $X_{a,b}$ with coordinates in $E^+ \oplus E^-$. Therefore by Proposition 2, the flow on $X_\infty^{a,b}$ is recurrent for almost every θ. This ends the proof of Theorem 1.

6.1. Acknowledgments. We thank V. Delecroix for helpful discussions. A. Avila is partially supported by the Balzan Research Project of J. Palis. A. Avila acknowledges support of the European Research Council through the Starting Grant project. P. Hubert is partially supported by ANR projet blanc GeoDyM.

References

[DHL] V. Delecroix, P. Hubert, S. Lelièvre, Diffusion for the windtree model, preprint 2011.

CNRS UMR 7586, INSTITUT DE MATHEMATIQUES DE JUSSEIU, 175 RUE DU CHEVALERET 75013-PARISS FRANCE

IMPA, ESTRADA DONA CASTORINA, 110 22460-320, RIO DE JANEIRO, BRAZIL

E-mail address: artur@math.jussieu.fr

LATP, CASE COUR A, FACULTE DES SCIENCES ST JEROME, AVENUE ESCADRILLE NORMANDIE-NIEMEN, 13397 MARSEILLE CEDEX 20

E-mail address: hubert@cmi.univ-mrs.fr