
RECURRENCE FOR THE WIND-TREE MODEL

A. AVILA AND P. HUBERT

Abstract. In this paper, we give a geometric criterion ensuring the re-
currence of the vertical flow on Zd covers of compact translation surfaces
(d ≥ 2). We prove that the linear flow in the windtree model is recurrent
for every pair of parameters and almost every direction.

1. Introduction

Very little is known on the dynamics of the linear flows on non compact
translation surfaces. Some results exist for classes of examples. “Periodic”
translation surfaces form a natural class actively studied. In this paper, we
consider a translation surface X̂ which is a ramified cover over a compact
translation surface X, the covering group being Zd (d ≥ 1). Let Σ be the
finite set of branched points. Since the intersection form is non degenerate
between H1(X,Σ,Z) and H1(X \ Σ,Z), every cover is defined by a d-uple
of independent elements Γ = (γ1, . . . , γd) in the group of relative homology
H1(X,Σ,Z). The d-uple Γ is called the cocycle defining the covering X̂. The
holonomy of an element of H1(X,Σ,Z) is

∫
γ ω where ω is the holomorphic 1–

form defining the translation surfaceX. A necessary condition for recurrence
is the so called no drift condition

hol(γi) = 0, for i = 1 . . . d.

The Lebesgue measure is invariant by the linear flow on X̂, it is an infinite
measure. For d = 1 under the no drift condition, recurrence of the linear flow
is a consequence of general principles: ergodicity of the flow on X implies
recurrence on X̂. This is not true in dimension d ≥ 2. For translation
surfaces, the first counter example is due to Delecroix [De].

In this paper, we give a geometric criterion ensuring recurrence for the
linear flow on a Z2 cover of a compact translation surface (see sections 3 and
4). We apply this criterion to periodic versions of the wind-tree model intro-
duced by Ehrenfest in 1912 ([EhEh]). The model is the following: a point
moves in the plane and collides with rectangular scatterers with the usual
law of reflexion. The scatterers are identical rectangular obstacles located
periodically along a square lattice on the plane, one obstacle centered at
each point of Z2. The scatterers are rectangles of size (a, b), with 0 < a < 1,
0 < b < 1. We name the subset of the plane obtained by removing the
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obstacles the billiard table T (a, b). Polygonal billiard is one of the main mo-
tivation to develop the theory of translation surfaces. Thus, it is important
to understand the dynamics in this situation. The phase space splits into a
family of invariant surfaces since the angles at the boundary of T (a, b) are
multiples of π/2. We prove

Theorem 1. For every (a, b) ∈ (0, 1) × (0, 1), the billiard flow in the table
Ta,b is recurrent for almost every direction θ.

Using the Katok-Zemliakov’s construction, we replace the billiard flow in
T (a, b) by the linear flow on a non compact translation surface X∞a,b. The
surface X∞a,b is a cover of a genus 5 translation surface Xa,b (see [DHL] for
details). That’s why we can apply the geometric criterion proven in section
4. Theorem 1 is a generalization of a result in [HLT]. Our result is optimal
for two different reasons. For all rational parameters (a, b) there exists a
set of positive Hausdorff dimension of non recurrent directions on X∞a,b (see
[De]). Moreover ergodicity is false by a result of Frączek and Ulcigrai (see
[FU]).

1.1. Outline of the paper. In section 3, we prove a general criterion for
recurrence for linear flows on Z2 covers of compact translation surfaces. In
section 4, we derive a geometric criterion for recurrence. In section 5, we
check this criterion for the windtree model for generic parameters. This
relies on a careful analysis of the existence of“good” cylinders. A crucial
fact is that the surface Xa,b is a cover of an L shaped surface La,b. In section
6, we prove that the result is in fact true for every parameter. A key point is
McMullen’s classification of SL2(R) invariant measures in the stratum H(2)
(see [Mc]).

2. Background

For general references on translation surfaces we refer the reader to the
survey of A. Zorich [Zo] or the notes of M. Viana [Vi].

A translation surface is a surface which can be obtained by edge-to-edge
gluing of polygons in the plane using translations only. Such a surface is
endowed with a flat metric (the one from R2) and canonic directions. There
is a one to one correspondence between translation surfaces and compact
Riemann surfaces equipped with a non-zero holomorphic 1–form. There is
a canonic vertical direction in each translation surface and we refer to the
flow in this direction as the vertical flow.

A cylinder on a translation surface is a maximal open annulus filled by
homotopic simple closed geodesics. The direction of a cylinder is the direc-
tion of these geodesics. A cylinder is isometric to the product of an open
interval and a circle. The core curve of a cylinder is the geodesic projecting
to the middle of the interval.

The moduli space of translation surfaces of genus g is stratified according
to the degrees of zeros of the corresponding 1-forms. If α = (α1, ..., αs) is a
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partition of the even number 2g − 2, H(α) denotes the stratum consisting
of 1–forms with zeros of degrees α1, ..., αs, on genus g-Riemann surfaces.
We denote by H(1)(α) ⊂ H(α) the codimension 1 subspace which consists
of area 1 translation surfaces.

There is a natural action of SL2(R) on strata H(α) coming from the linear
action of SL(2,R) on R2. The Teichmüller geodesic flow on Hg is the action

of the diagonal matrices gt =
(
et 0
0 e−t

)
. We denote by Mg the moduli

space Mg of closed compact Riemann surfaces of genus g. The image of
the orbits (gt · (X,ω))t inMg are geodesic with respect to the Teichmüller
metric. Each stratum Hg(α) carries a natural Lebesgue measure, invariant
under the action of SL(2,R). Moreover, this action preserves the area and
hence H(1)(α). H. Masur [Ma1] and independently W. Veech [Ve1] proved
that on each component of a normalized stratum H(1)(α) the total mass of
the Lebesgue measure is finite and the geodesic flow acts ergodically with
respect to this measure. Another important one parameter flow on H(α) is

the horocycle flow given by the action of hs =
(

1 s
0 1

)
.

Stabilizers for the action of SL(2,R) in the stratum H(α), called Veech
groups, are discrete subgroups of SL2(R). In exceptional cases are lattices
(i.e. finite-covolume subgroups) in SL2(R) (see [Ve1]), though they are never
cocompact. Closed compact translation surfaces with a lattice Veech group
are exactly those whose SL2(R)-orbit is closed in the corresponding stratum.
They are called Veech surfaces. Their orbits project to Teichmüller curves
in the moduli spaceMg.

The stratumH(2) is connected and is the best understood in higher genus.
It was proven that the Teichmüller curves are generated by L shaped surfaces
of the form L(a, b) (see figure 1).

(0, 0) (1− a, 0) (1, 0)

(0, 1)

(0, 1− b)

Figure 1. The surface La,b: opposite sides are identified

In his fundamental work, C. McMullen [Mc] proved a complete classifi-
cation theorem for SL2(R)-invariant measures and closed invariant sets in
genus 2. The only SL(2,R)-invariant irreducible closed subsets of H(2) are
the Teichmüller curves and the whole stratum. The only ergodic SL(2,R)-
invariant probability measures are the Haar measure carried by Teichmüller
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curves and the Lebesgue measure on the stratum. Following McMullen,
these measures will be called Euclidean measures.

Let g ≥ 2. The Hodge bundle Eg is the real vector bundle of dimen-
sion 2g over Mg where the fiber over X ∈ Mg is the real cohomology
H1(X;R). Each fibre H1(X;R) has a natural lattice H1(X;Z) which allows
identification of nearby fibers and definition of the Gauss-Manin (flat) con-
nection. Since Zd covers are defined by relative cycles, we will also consider
the extended Hodge bundle of fiber H1(X,Σ,R). The holonomy along the
Teichmüller geodesic flow provides a cocycle called the Kontsevich-Zorich
cocycle. Given a Teichmüller geodesic starting from a translation surface X
and γ ∈ H1(X,Σ,Z) we denote by Gt(γ) ∈ H1(gt(X),Σ,Z) the value of the
Kontsevich-Zorich cocycle after time t. When Γ = (γ1, . . . , γd) is a vector
with coordinates in H1(X,Σ,Z), Gt(Γ) is the vector (Gt(γ1), . . . , Gt(γd)).
In the sequel, we will only work in local coordinates, thus homology (resp.
cohomology) can be locally identified. Given a simply connected small open
set U in a stratum, the Kontsevich-Zorich cocycle tells us how a cycle has
been modified when a Teichmüller geodesics comes back in U .

3. Recurrence criterion

We recall that a Zd cover of a translation surface X is given by a d-uple of
independent elements in H1(X,Σ,Z). Let Γ be such a d-uple in H1(X,Σ,Z).
We denote by XΓ the cover of X associated to Γ.

Definition 1. Let X be a compact translation surface, Γ a cocycle, XΓ the
Zd cover of X associated to Γ and φ̂t the vertical flow on XΓ. Given a
real number C > 1 we say that XΓ is C-recurrent if there is an embedded
rectangle R = I × [0, L) in X of measure larger than 1/C with L > 1/C
such that if x ∈ R then for every preimage x̂ ∈ XΓ we have:

• x̂ ∈ XΓ and φ̂L(x̂) belong to the same horizontal leaf
• the distance dH along the horizontal leaf between x̂ and φ̂L(x̂) satisfies

dH(x̂, φ̂L(x̂)) < C.

Proposition 1. Let X be a compact translation surface, Γ a cocycle and
C > 1. Assume that there exists a sequence of real numbers (tn) tending to
infinity such that gtn(X)Γn is C-recurrent for every n where Γn = Gtn(Γ).
Then the vertical flow is recurrent on XΓ if the flow φt is ergodic on X.

Proof. We denote by R̃n the rectangle which is C-recurrent for Γn on gtn(X)
and by Rn its preimage by gtn . Teichmüller flow in backward direction
contracts horizontals and expands verticals. Thus, the length Ln of Rn is at
least etn/C and its width is at most e−tn/C. Therefore, if x ∈ X belongs to
Rn, we have dH(x̂, φ̂Ln(x̂)) < Ce−tn . Thus the vertical trajectory of a point
which belongs to Rn for infinitely many n is recurrent.

Lemma 1. Almost every point x ∈ X belongs to Rn for infinitely many n.
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Proof. The width of the rectangle Rn is at most e−tn/C. We consider a

subsequence of real numbers (still denoted by (tn)) such that
∞∑
n=0

e−tn is

finite.
Denote by

Ω = {x ∈ X such that, for infinitely many n, x ∈ Rn}.

We have λ(Ω) ≥ 1/C since λ(Rn) = λ(R) > C. Let us prove that Ω is
φt invariant mod 0 for every t > 0. This will prove that λ(Ω) = 1. For
t > 0 fixed, the t-top of Rn is the set An = I × [etnLn − 2t, etnLn) where

Ln is the length of R̃n. This set is defined for n large enough. As
∞∑
n=0

e−tn

is finite, by Borel-Cantelli Lemma, almost every x ∈ X belongs to a finite
number of t-top of the rectangles Rn. Take x ∈ Ω and in this set of full
measure. Consequently, for infinitely many n, x belongs to Rn \ An. Thus
φt(x) belongs to infinitely many rectangles Rn which means that φt(x) ∈ Ω.
This ends the proof of the lemma. �

The proof of Proposition 1 is now complete.
�

Remark 1. This proposition is an avatar of Masur’s criterion for unique
ergodicity on compact translation surfaces [Ma2].

4. Geometric criterion for recurrence

Through this section, L will be a closed gt invariant locus and B a locally
flat continuous linear subbundle of the extended Hodge bundle over L.

Remark 2. Since L is gt-invariant and B is locally flat, B is invariant
under the Kontsevich-Zorich cocycle.

Definition 2. Fix X ∈ L. A cylinder C ⊂ X is said to be B-good if
i(m(C), γ) = 0 for all γ ∈ BX .

Now we give a strong relation between the existence of good cylinders and
the C-recurrence property.

Lemma 2. Let X in L with a vertical B-good cylinder. There exists a
neighborhood U ⊂ L of X and a C > 0 such that every surface Y ∈ U is
C-recurrent for every Γ with coordinates in BY ∩H1(Y,Σ,Z).

Proof. Assume that X contains a B-good vertical cylinder of area at least
2C and width at most 1/2C. Cylinders are stable under small perturbations
in the strata of abelian differentials. Thus, in a neighborhood of X, there
is a metric cylinder whose core curve is homologous to m(C) and direction
close to be vertical. In a nearby direction, this cylinder contains a rectangle
which takes up an arbitrary large proportion of the cylinder (see figure 2).



6 A. AVILA AND P. HUBERT

We fix U a neighborhood of X small enough so that this cylinder contains
a rectangle whose sides are horizontal and vertical, area is at least C and
width at most 1/C. Let Y ∈ U and Γ with coordinates in BY . The previous
part of the argument provides on Y a cylinder C(Y ) and a rectangle R(Y ).
Denote by L the vertical length of the rectangle R(Y ). Note that C(Y ) is
B-good by local flatness, so the lift of the cylinder C(Y ) in the cover YΓ
is a union of cylinders isometric to C(Y ). Moreover, if x̂ ∈ R(Y ), then
d(x̂, φ̂L(x̂) < C. �

a

a

Figure 2. cylinder containing a rectangle.

Proposition 2. Let X in L with a vertical B-good cylinder. Let Y ∈ L and
Γ be a d-uple of elements in BY ∩H1(Y,Σ,Z). If the positive gt orbits of Y
accumulates on X then the vertical flow is recurrent on YΓ.

Proof. Denote by (tn) the subsequence such that gtn(Y ) tends to X and call
Γn = Gtn(Γ). By Masur’s criterion, the vertical flow on Y is ergodic. Since
gtn(Y ) tends to X and B is invariant by the Kontsevich Zorich cocycle, by
Lemma 2, for n large enough, gtn(Y ) is C recurrent and then by Proposition
1 the vertical flow is recurrent on YΓ.

�

5. Recurrence for the wind-tree model: almost everywhere
statement

In this section, we check the geometric criterion for the windtree model.

5.1. Summary of results on the windtree model. We mention here
results from [DHL]. The billiard flow is described by the linear flow on a
non compact translation surface X∞a,b. The surface X∞a,b is a Z2 cover of a
genus 5 surface Xa,b which is itself a non ramified cover of degree 4 of of a
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L shaped surface La,b in the stratum H(2). Denote by L the locus of these
intermediate covers.

The Klein group K acts on Xa,b by translations (see figure 3). This action
induces a splitting of H1(Xa,b,Z) which is SL2(R) invariant.

a

c

b

d

a

c

b

d

e fe f

g g h h

α

β

β

α

γ

δ

δ

γ

ε ζ ζ ε

η θ θ η

Figure 3. The genus 5 surface obtained from from the
windtree model. Identifications are indicated by greek and
latin letters.

Denote by τh, τv and τhτv the non trivial elements of K. τh (resp. τv)
permutes the fundamental domains horizontally (resp. vertically).

We have:
H1(Xa,b,R) = E++ ⊕ E+− ⊕ E−+ ⊕ E−−

where E++ is the vector space invariant by τh and τv, E+−(Z) the vector
space invariant by τh and anti-invariant by τv, etc. This decomposition
respects the symplectic structure. The coordinates of the Z2 cocycle defining
X∞a,b belong to E+− ⊕ E−+. The invariant vector space by τhτv is E++ ⊕
E−−. The quotient surface Xa,b/τhτv is a hyperelliptic surface (it belongs
to the hyperelliptic locus of the non hyperelliptic component of the stratum
H(2, 2)).

On the surface La,b two Weierstrass points are distinguished by the cocycle
defining X∞a,b and are denoted by E and F (see figure 4)
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D D D

DD

DD

D

E

B

E

FCF

A

Figure 4. Weierstrass points on La,b

5.2. Good cylinders in the windtree model. We now give a refined
version of Lemma 10 of [HLT] in the adequate language for our purpose.

Lemma 3. The lift to Xa,b of a cylinder in La,b whose core curve contains
E and F is the union of two cylinders which are homologous. The homology
class of the core curve of each cylinder belongs to E++.

Proof. Since E and F are Weierstrass points on La,b, every trajectory from
E to F closes up in La,b. The length of the closed curve γ is twice the length
of the segment EF . In [HLT] Lemma 10 a symmetry argument shows that
γ lifts in X∞a,b to the core of a cylinder whose length is twice the length of γ.
The proof is explained in the language of billiards. The symmetry argument
shows that in the billiard table Ta,b, the trajectory is symmetric with respect
to a lattice point. It contains two preimages of E (and F ) with opposite
vector. We now translate this argument in Xa,b. Let γ̂ be a preimage of γ
in Xa,b containing Ê a preimage of E. The previous argument means that γ̂
contains Ê and τhτv(Ê). This implies that the homology class of γ̂ is τhτv-
invariant. Thus, it belongs to E++ ⊕ E−−. The same is true for the other
preimage of γ denoted by γ̂′. The vector space E++⊕E−− is identified with
H1(Xa,b/τhτv,R) (it is the τhτv-invariant part of H1(Xa,b,R)). Denote by γ̂
and γ̂′ the projections of γ̂ and γ̂′ in Xa,b/τhτv.

We now prove that γ̂ and γ̂′ are equal in H1(Xa,b/τhτv,R). A simple
calculation shows that the Weierstrass points in Xa,b/τhτv are the preimages
of the Weierstrass points A, B, C, D in La,b (see figure 5).

In La,b the curve γ contains the two Weierstrass points E and F thus it
does not contain any other Weierstrass point. Therefore γ̂ and γ̂′ are not
fixed by the hyperelliptic involution ι in Xa,b/τhτv. Thus, we have ι(γ̂) =
−γ̂′. This implies that γ̂ and γ̂′ are homologous in Xa,b/τhτv. Consequently
γ̂ and γ̂′ are homologous in Xa,b. We also have

γ̂′ = τh(γ̂) = τv(γ̂).

This yields that the homology class of γ̂ is τh and τv invariant thus it belongs
to E++. �
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Figure 5. Weierstrass points on the surface Xa,b/τhτv. The
identification are indicated by the letters a, b, c, d, e, f, g, h.
The singularities are Weierstrass points.

Corollary 1. Any lift to Xa,b of a cylinder in La,b whose core curve contains
E and F is a E+− ⊕ E−+ ⊕ E−− good cylinder.
Proof. Lemma 3 shows that the core curve of such a cylinder belongs to E++

which is the symplectic orthocomplement of E+−⊕E−+⊕E−−. This means
that this cylinder is E+− ⊕ E−+ ⊕ E−− good on Xa,b.

�

5.3. Almost everywhere statement. We now apply the geometric crite-
rion to prove an intermediate statement. We prove recurrence of the cocycle
for almost every surface in L with respect to any SL2(R) ergodic invariant
probability measure.
Proposition 3. Let C be a connected closed invariant subspace of L, µ be
its Euclidean measure and let X be in C. Let U be a neighborhood in C of
X. Denote by Γ a cocycle with values in E+− ⊕ E+− ⊕ E−−. For µ almost
every Y ∈ U the vertical flow is recurrent in YΓ.
Remark 3. This applies to the windtree model since the cocycle defining it
belongs to E+− ⊕ E+−.

We need the following lemma.
Lemma 4. On every L-shaped surface there is a cylinder with Weierstrass
points E and F in its core curve.
Proof. We take coordinates on the L-shaped surface as in figure 6. We
denote by R the rectangle D0D1D

′
0D
′
1. We unfold this rectangle along the

vertical side containing D1 and F1. We obtain points F1, . . . , Fn with the
same y-coordinate in the complex plane. In the horizontal strip ending at
the vertical segment D0D

′
0, there is no singularity except on the horizontal

boundaries. We now consider the cone bounded by the lines ED0 and ED1.
As the slope of ED0 is larger than the slope of ED1, every point in R has a
preimage in the strip contained in the cone. Thus there is a segment joining
E to each point of R and thus to F .
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D0

D′0

D1

D′1

E

F1F2F3

Figure 6. Orbit from E to F

�

Proof of Proposition 3. Fix µ a SL2(R) ergodic invariant probability mea-
sure on L and Y a generic surface for µ. By McMullen’s classification, the
support of every ergodic measure in H(2) contains a L-shaped surface. Thus
the support of µ contains a surface Xa,b for some (a, b) ∈ (0, 1)2. By Corol-
lary 1 and Lemma 4, the surface Xa,b contains a E+− ⊕ E−+ ⊕ E−− good
cylinder. As Y is a generic point, its orbit under the geodesic flow accu-
mulates to Xa,b. Thus by Proposition 2, the vertical flow is recurrent on
Y . �

6. Everywhere statement

First fix some notations. Our convention for subgroups and elements in
SL2(R) is the following: the rotation of angle θ is denoted by rθ, the subgroup
P is the group of upper triangular matrices is K the orthogonal group. We

recall that the geodesic flow is the one parameter flow gt =
(
et 0
0 e−t

)
, t ∈ R,

the horocycle flow is the one parameter flow hs =
(

1 s
0 1

)
, s ∈ R.

Let L be the locus defined in § 5.1, letX be a translation surface belonging
to L and Ω be a set of positive measure of the unit circle. We denote by ν
the normalized Lebesgue measure on Ω. We first prove some useful lemmas.

Lemma 5. Every limit point ν∞ of the family of probabilities
1
T

∫ T

0
gtν

is a probability which is P invariant.
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Proof. Every limit of gtν is a probability measure in L. This is a direct
consequence of the results of Eskin-Masur [EM] and Athreya [At]. No mass
can escape to infinity.

Claim 1. Any limit of gtν is hs invariant.

The proof of the claim is an adaptation of Eskin-Marklof-Morris Lemma
7.3 (see [EMM]). We fix a sequence ti such that gtiν tends to µ. Fix s ∈ R,
a matrix calculation proves that there exists a sequence (θj) tending to zero
such that gtirθj

g−1
ti tends to hs. Let us prove that

gtirθj
g−1
ti
gtiν − gtiν

tends to zero as j tends to infinity. Passing to the limit this will prove that µ
is hs invariant. We use the fact that ν is absolutely continuous with respect
to Lebesgue measure on the circle. This means that there is a non negative
measurable function φ such that

dν = φdθ and
∫
S1
φdθ = 1.

Let f be a bounded continous function on L,

∆j =
∫
L
f(M)gtirθj

g−1
ti
gtiν −

∫
L
f(M)gtiν =

∫
L
f(M)gti(rθj

dν − dν) =∫
L
f(g−1

ti
M)(φ ◦ rθj

− φ)dθ.

Thus
|∆j| ≤ ||f ||∞||φ ◦ rθj

− φ||1
where || ||∞ is the infinity norm on bounded continuous functions on L and
|| ||1 is L1 norm in the unit circle with respect to Lebesgue measure. For
every φ ∈ L1, ||φ◦rθj

−φ||1 tends to zero as j tends to infinity. Consequently
(∆j) tends to zero as j tends to infinity which proves the claim.

Now ν∞ is obtained as a Cesaro mean. Thus it is gt invariant. Moreover,
by the claim, it is a convex combination of hs invariant measures thus it is
hs invariant. This means that it is P invariant.

�

Consequently the support Σ of ν∞ is P invariant.

Lemma 6. The set KΣ is G invariant. The set Σ contains a Teichmüller
curve.

Proof. A direct calculation shows that the set KΣ is SL2(R) invariant since
the set Σ is P invariant. By McMullen classification, KΣ contains a Teich-
müller curveM. Thus Σ ∩M is a closed P invariant set and contained in
the homogeneous spaceM. Thus, by Ratner’s theorem, Σ ∩M =M. �

We now prove that:
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Lemma 7. For every surface X in the locus L, for almost every θ in Ω, the
set of limit points of gtrθX contains a Teichmüller curve.

Proof. Assume that there is a set of positive Lebesgue measure Ω′ on the
circle which does not satisfy the conclusion of the lemma. For every Teich-
müller curve M, fix a point xM with dense gt orbit in M. This point xM
does not belong to the omega-limit set of gtrθX for θ in Ω′. Restricting Ω′,
we can obtain an open set U of L containing xM for allM such that gtrθX
does not enters U for θ ∈ Ω′ and t large enough. Restricting Ω′ further, one
can assume that for t ≥ TM gtrθX does not enters U .

We perform the same construction as in Lemma 5 replacing Ω by Ω′. We
fix a limiting measure ν ′∞ obtained by this process. By construction of ν ′∞,
ν ′∞U = 0. This is a contradiction with Lemma 6 since U intersects every
Teichmüller curve. �

We now complete the proof of Theorem 1. Let X = Xa,b be a surface ob-
tained by the windtree construction for some parameters (a, b). By Lemma
7, for almost every θ, the limit points of gtrθX contains a Teichmüller curve.
By McMullen classification of Teichmüller curves in genus 2 every Teich-
müller curve is generated by a L shaped polygon L. Thus L is a limit point
of gtrθX. L contains a E+−⊕E−+⊕E−− good cylinder by Corollary 1. As
it is explained in § 5.1 the flow in X∞a,b is defined by a cocycle over Xa,b with
coordinates in E+− ⊕ E−+. Therefore by Proposition 2, the flow on X∞a,b is
recurrent for almost every θ. This ends the proof of Theorem 1.
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