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ABSTRACT

Compressive Sensing (CS) is a new paradigm in signal ac-
quisition and compression that has been attracting the inter-
est of the signal compression community. When it comes to
image compression applications, it is relevant to estimate the
number of bits required to reach a specific image quality. Al-
though several theoretical results regarding the rate-distortion
performance of CS have been published recently, there are
not many practical image compression results available. The
main goal of this paper is to carry out an empirical analysis of
the rate-distortion performance of CS in image compression.
We analyze issues such as the minimization algorithm used
and the transform employed, as well as the trade-off between
number of measurements and quantization error. From the
experimental results obtained we highlight the potential and
limitations of CS when compared to traditional image com-
pression methods.

Index Terms— Compressive Sensing, Rate-Distortion
Analysis, Quantization, Image Coding.

1. INTRODUCTION

Ordinary images, as well as most natural and manmade sig-
nals, are compressible and can, therefore, be well represented
in a domain in which the signal is sparse. Standard image ac-
quisition techniques follow the sample-then-compress frame-
work. This involves sampling at a large rate only to discard
most of the acquired information using a compression scheme
that exploits the sparse representation.

In this context, Compressive Sensing (CS) comes out as a
new paradigm for data acquisition; it gives a stable and robust
algorithm that allows sensing at rates much smaller than the
Nyquist limit, while recovering the signals with little corrup-
tion [1, 2]. Reconstruction from the measurements is achieved
by convex optimization techniques (e.g. l1-norm minimiza-
tion).

To compress sensed information, it is necessary to make
use of quantization schemes that add distortion to the acquired
data. Therefore, a relevant contribution to CS theory would
be to verify how it performs in the presence of quantization
errors and in a rate-distortion sense.

Theoretical results have been established guaranteeing
stability of CS to the addition of quantization errors. In [3],

CS encoding of approximately sparse signals with quantized
measurements is studied and performance is demonstrated
to be within a logarithmic factor to the one of the optimal
encoder.

Related works consider strictly sparse signals and eval-
uate CS when quantization errors are added. In [4], the re-
sults of [3] are extended to the scenario where exact sparsity
is guaranteed and inefficiencies in terms of rate and perfor-
mance are verified, suggesting modifications in the uniform
scalar quantization method and the reconstruction algorithm.
In [5], both of these changes are explored and extensive com-
puter simulations are made confirming their advantages.

The rate-distortion function is used in [6] to compare CS
to the ideal compression scheme (where an oracle informs the
sparsity pattern) and the loss in performance is evaluated as
relatively small (an additive logarithmic rate penalty is ob-
served). In [7], a lower bound on the number of measure-
ments needed to reconstruct a signal is set as a function of the
measurements’ SNR and rate-distortion function.

However, fundamental questions regarding performance
in practical applications still remain unanswered.

In this work we aim at helping to answer some of these
questions from an empirical point of view. Though innumer-
able applications have been suggested, we concentrate our
study on the scenario in which CS was first presented and
is mostly discussed: image sensing and compression.

It is important to emphasize that it is not within the
scope of this work to elaborate further theoretical results or
to analyze CS fundamental limitations in idealized scenarios.
Rather, we aim at evaluating applications in image acquisition
through the use of of empirical analysis.

1.1. Overview of CS and Basic Notation

Let x ∈ C
N×1 be a vector representation of an image and

Ψ ∈ C
N×N a unitary transform that makes x sparse, i.e.,

Ψx = s , where s has only S nonzero coefficients. Since
we are acquiring only M � N measurements, sensing can
be denoted by y = Φx = Θs, where Φ,Θ ∈ C

M×N and
Θ = ΦΨ∗.

CS theory states that it is possible, through the use of
a convex optimization algorithm, to recover x from y with
overwhelming probability if Θ satisfies a Restricted Isometry
Property (RIP) [8]. It has also been shown that this property
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Fig. 1. Test images.

can by assumed if the entries of Θ belong to certain random
ensembles and M is of the same order as S log(N/M).

Moreover, this acquisition technique is robust to sparsity
approximations and measurements errors [9]. Let y ∈ C

M×1

be the acquired data corrupted by noise, i.e., y = Φx + η,
where ‖η‖l2 ≤ εq. If we reconstruct the signal by solving the
convex optimization problem

min
x

‖Ψx‖l1
subject to ‖y − Φx‖l2 ≤ εq. (1)

then the recovery error is bounded by the sum of the measure-
ment (quantization) error and the error due to the fact that the
signal is not strictly sparse, i.e.

‖y − Φx‖l2 ≤ C ·

⎛
⎜⎝εq + S−1/2‖xS − x‖l1︸ ︷︷ ︸

εs

⎞
⎟⎠ , (2)

where C is relatively small and xS is an approximation of x
where the S largest coefficients in the Ψ domain are observed.
This implies that the reconstruction error in CS is of the order
of the maximum of the quantization and measurement errors.
For details see [9].

2. EXPERIMENTAL SETUP

CS investigations were made on four different images of size
N = 2562, which differ in terms of both sparsity and high
energy coefficient distribution in the frequency domain (see
Figure 1). Since the images are stored in the computer as a
matrix of pixels, we simulate acquisition by means of mea-
surements that involve linear combinations of these pixels.

Measurements were taken by choosing at random M
waveforms of an N × N Noiselet transform [10]. Such mea-
surements were chosen because they are highly incoherent [1]
with the considered sparse domains and the RIP tends to hold
for reasonable values of M . In addition, the matrix created is
orthogonal and self-adjoint, thus being easy to manipulate.

The following recovery strategies were considered:

A. Minimization of the l1-norm of the image’s DCT (dis-
crete cosine transform);

B. Minimization of the l1-norm of the image’s DWT (dis-
crete Wavelet transform);

C. Minimization of the image’s TV (total-variation)
norm; and

D. Minimization of the l1-norm of the image’s SVD (sin-
gular value decomposition)

The efficiency of each strategy is related to how sparse
the images are in the considered domain. The DCT and the
Wavelet domains were chosen because of their widespread
use in image compression standards. In addition, since most
published theorems relate to orthogonal rather than to the
more efficient biorthogonal basis, we used an orthonormal
Wavelet basis (Coiflet with 2 vanishing moments).

In many recent publications [1, 11], CS researchers have
used the total variation (TV) norm, which can be interpreted
as the l1-norm of the (appropriately discretized) gradient. Ap-
plied to images, the TV-norm minimization favors a certain
smoothness that is usually found in natural and manmade pic-
tures without penalizing discontinuous features and is, there-
fore, very effective.

Finally, the SVD was calculated for each image and used
to determine sparsity domains because it gives a very accurate
sparse representation. This technique requires knowledge of
the SVD basis, that is calculated from the whole image infor-
mation (not available in CS) and requires a large data rate for
transmission (which is not taken into account). Nevertheless
we used such results as upper bounds that, although loose,
give interesting insights into performance limitations.

While strategies A, B and D solve Equation 1, in strategy
C the image is reconstructed by solving the following convex
optimization problem:

x̂ = min
x

‖x‖TV subject to ‖y − Φx‖l2 ≤ ε. (3)

2.1. The Rate-Distortion Curve

Scalar uniform quantization was considered and tests were
made for different quantization steps in order to select the best
for each compression rate and plot rate-distortion curves.

Rate was calculated as (M/N)Hy , where Hy is the en-
tropy (in bits per pixel) of the quantized measured data y es-
timated from its histogram. The problem of unused quanti-
zation values is resolved by considering each of them to have
occurred once.

2.2. Implementation Aspects

The experiments were implemented in MATLAB and the
l1-Magic [12] toolbox was used to solve both optimization
problems (Equations 1 and 3). For each image, recovery
strategy and quantization step, the parameter εq was cho-
sen experimentally in order to maximize the PSNR (peak
signal-to-noise ratio).

The Wavelet basis was generated using the WAVELAB
[13] package and the Noiselet basis using an algorithm made
available by Romberg [11].

3. RESULTS

In Figure 2 the rate-distortion curve was plotted for all tested
images and considered strategies. We can observe that CS
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recovery schemes that perform the l1-norm minimization in
the Wavelet domain are far less efficient than the JPEG2000
standard. However, by analyzing the results for strategy D
and for the test image Phantom on strategy C, we can see
that there is room for improvement; in both cases one gets
better results than with JPEG2000. The Phantom image in
the frequency domain and the SVD transform are both very
sparse. This indicates that by choosing representations that
strengthen sparsity one can reduce not only the number of
measurements needed to reconstruct the signal but also the
approximation error.

It is important to mention that, though strategy D presents
an upper bound to CS performance, it is not really practical
because it requires an a priori knowledge of the image’s SVD.
Figure 5 highlights this argument by contrasting recovery of
the image Camera man using as a basis Camera man’s SVD
and Lena’s SVD.

In Figure 3 the Rate × PSNR curve was plotted for strate-
gies B and C using varying quantization steps. It can be ob-
serverd that for a particular compression rate, each image and
recovery strategy has an optimal quantization step that pro-
duces the highest PSNR. If the image is not sparse in the con-
sidered domain, the curves show that it is more efficient to
take a large number of measurements and compensate for the
potential rate increase by enlarging the quantization step.

One can also observe that for a fixed PSNR, the ideal
quantization step is approximately the same in all evaluated
scenarios. This observation is closely related to the result in
Equation 2, which indicates that the recovery error is of the
same order as the largest of the approximation and measure-
ment errors [3]. The PSNR determines the acceptable distor-
tion and, therefore, the values of εq and εs. While εq only
depends on the quantization step, εs depends on the sparsity
distribution and, hence, on the number of measurements.

The same comment can be made after observing Figure 4,
that shows the results in terms of Number of Measurements ×
PSNR. For each strategy the number of measurements deter-
mines εs; in addition, all quantization steps that make εq of the
order of εs (or smaller) result in the same PSNR (see Equation
2). Therefore, all curves overlap until the number of measure-
ments is large enough so that εs exceeds εq (see Figure 4.(b)).
In Figure 4.(a), it is noteworthy that for quantization steps
smaller then 3, the curves overlap completely. This is so be-
cause as the errors due to sparsity are very large, reducing the
quantization step is ineffective in increasing PSNR. In con-
trast, in Figure 4.(c), where the image is strongly sparse in the
considered domain (SVD), εs tends to be much smaller, and
therefore such behavior is not observed.

A complete list of the results and the MATLAB code that
reproduces them is available at www.impa.br/∼aschulz/CS.

4. DISCUSSION AND CONCLUSIONS

The results obtained during this study suggest contexts in
which improvements in the CS acquisition strategy could
lead to better rate-distortion performance.

It has already been emphasized that sparsity plays a very
important role in recovery (e.g. SVD). Therefore, to make CS
applications in imaging practical, domains that enhance spar-
sity, such as biorthogonal Wavelets and gradient-based mod-
els (e.g. TV ), should be investigated.

Another significant aspect in CS development is the re-
covery algorithm. Though only the l1 and TV minimization
were evaluated in this work, there are recent algorithms that
not only speed up, but also improve reconstruction [14].

Different quantization models have also been proposed as
a way of improving CS performance [5]. Moreover, alterna-
tive sensing matrices are also worth investigating.

Finally, it is critical to discuss the universality of CS. Most
of the referenced publications point out that one of the great-
est advantages of CS is that it does not need to be adaptive. By
this, we mean that encoding can be done without the knowl-
edge of the sparsity distribution. In fact, as long as a domain
in which the signal is sparse exists, the same random mea-
surements can be taken to reconstruct it. However, in the ex-
periments performed, the best trade-off between the number
of measurements and the quantization step varies according
to the signal’s sparsity distribution. Devising strategies that
mitigate this effect is a topic for further investigation.
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Fig. 2. Rate-Distortion curves for all considered strategies and JPEG2000.
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Fig. 3. Rate × PSNR for varying quantization steps: (a-d) strategy B and (e-h) strategy C (see Section 2 for strategies definition).
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Fig. 4. Number of Measurements × PSNR (see Section 2 for strategies definition).
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Fig. 5. Rate × PSNR
Camera man, Strategy D.
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