Leaf conjugacies on the torus

Andy Hammerlindl

University of Toronto

June 22, 2009
Hyperbolic Systems

- Diffeomorphism $f : M \to M$ on a Riemannian manifold M.
Hyperbolic Systems

• Diffeomorphism $f : M \rightarrow M$ on a Riemannian manifold M.

• Tf-invariant splitting:

$$TM = E^u \oplus E^s$$
Hyperbolic Systems

- Diffeomorphism $f : M \rightarrow M$ on a Riemannian manifold M.
- Tf-invariant splitting:

\[
TM = E^u \oplus E^s
\]

E^u – the **unstable**, expanding direction
Hyperbolic Systems

• Diffeomorphism $f : M \to M$ on a Riemannian manifold M.

• Tf-invariant splitting:

$$TM = E^u \oplus E^s$$

E^u – the **unstable**, expanding direction

E^s – the **stable**, contracting direction
Hyperbolic Systems

• Diffeomorphism \(f : M \rightarrow M \) on a Riemannian manifold \(M \).

• \(T f \)-invariant splitting:

\[
TM = E^u \oplus E^s
\]

\(E^u \) – the \textbf{unstable}, expanding direction

\(E^s \) – the \textbf{stable}, contracting direction

• There are constants \(\lambda < 1 < \mu \) such that
Hyperbolic Systems

- Diffeomorphism $f : M \to M$ on a Riemannian manifold M.
- Tf-invariant splitting:

$$TM = E^u \oplus E^s$$

E^u – the **unstable**, expanding direction

E^s – the **stable**, contracting direction

- There are constants $\lambda < 1 < \mu$ such that

$$\mu \|v\| < \|Tf(v)\| \quad \text{for } 0 \neq v \in E^u(x),$$

$$\|Tf(v)\| < \lambda \|v\| \quad \text{for } 0 \neq v \in E^s(x).$$
Hyperbolic Systems

- Diffeomorphism $f : M \to M$ on a Riemannian manifold M.
- Tf-invariant splitting:

$$TM = E^u \oplus E^s$$

E^u – the **unstable**, expanding direction

E^s – the **stable**, contracting direction

- There are constants $\lambda < 1 < \mu$ such that

$$\mu \|v\| < \|Tf(v)\| \quad \text{for } 0 \neq v \in E^u(x),$$

$$\|Tf(v)\| < \lambda \|v\| \quad \text{for } 0 \neq v \in E^s(x).$$
Hyperbolic Systems

- Diffeomorphism $f : M \to M$ on a Riemannian manifold M.
- Tf-invariant splitting:

 $$TM = E^u \oplus E^s$$

 E^u – the **unstable**, expanding direction

 E^s – the **stable**, contracting direction

- There are constants $\lambda < 1 < \mu$ such that

 $$\mu \|v\| < \|Tf(v)\|$$
 $$\|Tf(v)\| < \lambda \|v\|$$

 for $0 \neq v \in E^u(x)$, $0 \neq v \in E^s(x)$.

\[\lambda \quad 1 \quad \mu\]

\[s \quad u\]
Linear Example

\[A = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \text{ on } \mathbb{R}^2/\mathbb{Z}^2 \]
Linear Example

\[A = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \] on \(\mathbb{R}^2 / \mathbb{Z}^2 \)

- Defines a map \(g : \mathbb{T}^2 \to \mathbb{T}^2 \).
Linear Example

\[A = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \text{ on } \mathbb{R}^2 / \mathbb{Z}^2 \]

- Defines a map \(g : \mathbb{T}^2 \to \mathbb{T}^2 \).

- \(A \) has eigenvalues \(\nu^{-1} < 1 < \nu \).
Linear Example

\[A = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \quad \text{on} \quad \mathbb{R}^2 / \mathbb{Z}^2 \]

- Defines a map \(g : \mathbb{T}^2 \to \mathbb{T}^2 \).
- \(A \) has eigenvalues \(\nu^{-1} < 1 < \nu \).
Linear Example

\[A = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \text{ on } \mathbb{R}^2/\mathbb{Z}^2 \]

- Defines a map \(g : \mathbb{T}^2 \to \mathbb{T}^2 \).
- \(A \) has eigenvalues \(\nu^{-1} < 1 < \nu \).

- Splitting \(T_xM = E^u(x) \oplus E^s(x) \) is the same for all points \(x \).
Invariant Foliations

- There are foliations W^u and W^s tangent to E^u and E^s.
Invariant Foliations

- There are foliations W^u and W^s tangent to E^u and E^s.
Invariant Foliations

• If \(x \) and \(y \) lie on the same stable leaf, then

\[
d_s(f(x), f(y)) < \lambda \, d_s(x, y)
\]

Here, \(d_s \) denotes distance along the leaf.
Invariant Foliations

• If \(x \) and \(y \) lie on the same stable leaf, then

\[
d_s(f(x), f(y)) < \lambda d_s(x, y)
\]

Here, \(d_s \) denotes distance along the leaf.

• For \(k \in \mathbb{Z} \),

\[
d_s(f^k(x), f^k(y)) < \lambda^k d_s(x, y).
\]
Invariant Foliations

- If x and y lie on the same stable leaf, then
 \[d_s(f(x), f(y)) < \lambda \ d_s(x, y) \]
 Here, d_s denotes distance along the leaf.

- For $k \in \mathbb{Z}$,
 \[d_s(f^k(x), f^k(y)) < \lambda^k \ d_s(x, y) \]

- Similarly, if x, y lie on the same unstable leaf, then
 \[\mu^k \ d_u(x, y) < d_u(f^k(x), f^k(y)) \]
Franks and Manning

- Every hyperbolic $f : \mathbb{T}^d \to \mathbb{T}^d$ is conjugate to a linear toral automorphism $g : \mathbb{T}^d \to \mathbb{T}^d$.
Franks and Manning

• Every hyperbolic $f : \mathbb{T}^d \to \mathbb{T}^d$ is conjugate to a linear toral automorphism $g : \mathbb{T}^d \to \mathbb{T}^d$.

• There is a homeomorphism $h : \mathbb{T}^d \to \mathbb{T}^d$, such that

$$h \circ g = f \circ h.$$
Franks and Manning

- Every hyperbolic \(f : \mathbb{T}^d \to \mathbb{T}^d \) is conjugate to a linear toral automorphism \(g : \mathbb{T}^d \to \mathbb{T}^d \).

- There is a homeomorphism \(h : \mathbb{T}^d \to \mathbb{T}^d \), such that

\[
h \circ g = f \circ h.
\]

- Can take \(g \) to be the \textit{linearization}, defined by the action

\[
f_* : \pi_1(\mathbb{T}^d) \to \pi_1(\mathbb{T}^d).
\]
Partially Hyperbolic Systems

• Diffeomorphism $f : M \rightarrow M$.
Partially Hyperbolic Systems

• Diffeomorphism $f : M \to M$.

• Invariant splitting:

$$TM = E^u \oplus E^c \oplus E^s$$
Partially Hyperbolic Systems

• Diffeomorphism $f : M \to M$.

• Invariant splitting:

$$TM = E^u \oplus E^c \oplus E^s$$

E^c – the **center** direction
Partially Hyperbolic Systems

- Diffeomorphism \(f : M \to M \).

- Invariant splitting:

\[
TM = E^u \oplus E^c \oplus E^s
\]

- The center direction \(E^c \)

- Expansion and contraction of \(E^c \) is dominated by the strong \(E^u \) and \(E^s \) directions.
Partially Hyperbolic Systems

• Diffeomorphism $f : M \to M$.

• Invariant splitting:

\[TM = E^u \oplus E^c \oplus E^s \]

E^c – the **center** direction

• Expansion and contraction of E^c is dominated by the strong E^u and E^s directions.

• There are constants $\lambda < \hat{\gamma} < 1 < \gamma < \mu$ such that
Partially Hyperbolic Systems

- Diffeomorphism $f : M \to M$.
- Invariant splitting:

$$TM = E^u \oplus E^c \oplus E^s$$

E^c – the **center** direction

- Expansion and contraction of E^c is dominated by the strong E^u and E^s directions.
- There are constants $\lambda < \hat{\gamma} < 1 < \gamma < \mu$ such that

$$
\mu \|v\| < \|Tf(v)\| \quad \text{for } 0 \neq v \in E^u(x), \\
\hat{\gamma} \|v\| < \|Tf(v)\| < \gamma \|v\| \quad \text{for } 0 \neq v \in E^c(x), \\
\|Tf(v)\| < \lambda \|v\| \quad \text{for } 0 \neq v \in E^s(x).
$$
Partially Hyperbolic Systems

- Diffeomorphism \(f : M \rightarrow M \).

- Invariant splitting:

\[
TM = E^u \oplus E^c \oplus E^s
\]

\(E^c \) – the **center** direction

- Expansion and contraction of \(E^c \) is dominated by the strong \(E^u \) and \(E^s \) directions.

- There are constants \(\lambda < \hat{\gamma} < 1 < \gamma < \mu \) such that

\[
\begin{align*}
\mu \|v\| &< \|Tf(v)\| & \text{for } 0 \neq v \in E^u(x), \\
\hat{\gamma} \|v\| &< \|Tf(v)\| < \gamma \|v\| & \text{for } 0 \neq v \in E^c(x), \\
\|Tf(v)\| &< \lambda \|v\| & \text{for } 0 \neq v \in E^s(x).
\end{align*}
\]
Partially Hyperbolic Systems

\[TM = E^u \oplus E^c \oplus E^s \]

- There are constants \(\lambda < \hat{\gamma} < 1 < \gamma < \mu \) such that

\[
\mu \|v\| < \|Tf(v)\| \quad \text{for } 0 \neq v \in E^u(x),
\hat{\gamma} \|v\| < \|Tf(v)\| < \gamma \|v\| \quad \text{for } 0 \neq v \in E^c(x),
\|Tf(v)\| < \lambda \|v\| \quad \text{for } 0 \neq v \in E^s(x).
\]
Partially Hyperbolic Systems

\[TM = E^u \oplus E^c \oplus E^s \]

- There are constants \(\lambda < \hat{\gamma} < 1 < \gamma < \mu \) such that

\[
\begin{align*}
\mu\|v\| &< \|Tf(v)\| \quad \text{for } 0 \neq v \in E^u(x), \\
\hat{\gamma}\|v\| &< \|Tf(v)\| < \gamma\|v\| \quad \text{for } 0 \neq v \in E^c(x), \\
\|Tf(v)\| &< \lambda\|v\| \quad \text{for } 0 \neq v \in E^s(x).
\end{align*}
\]
Partially Hyperbolic Systems

\[TM = E^u \oplus E^c \oplus E^s \]

- There are constants \(\lambda < \hat{\gamma} < 1 < \gamma < \mu \) such that

\[
\begin{align*}
\mu \|v\| &< \|Tf(v)\| & \text{for } 0 \neq v \in E^u(x), \\
\hat{\gamma} \|v\| &< \|Tf(v)\| < \gamma \|v\| & \text{for } 0 \neq v \in E^c(x), \\
\|Tf(v)\| &< \lambda \|v\| & \text{for } 0 \neq v \in E^s(x).
\end{align*}
\]
Partially Hyperbolic Systems

\[TM = E^u \oplus E^c \oplus E^s \]

- There are constants \(\lambda < \hat{\gamma} < 1 < \gamma < \mu \) such that

\[
\begin{align*}
\mu \|v\| &< \|Tf(v)\| \quad \text{for } 0 \neq v \in E^u(x), \\
\hat{\gamma} \|v\| &< \|Tf(v)\| < \gamma \|v\| \quad \text{for } 0 \neq v \in E^c(x), \\
\|Tf(v)\| &< \lambda \|v\| \quad \text{for } 0 \neq v \in E^s(x).
\end{align*}
\]
Partially Hyperbolic Systems

\[TM = E^u \oplus E^c \oplus E^s \]

- There are constants \(\lambda < \hat{\gamma} < 1 < \gamma < \mu \) such that

\[
\begin{align*}
\mu \|v\| &< \|Tf(v)\| & \text{for } 0 \neq v \in E^u(x), \\
\hat{\gamma} \|v\| &< \|Tf(v)\| < \gamma \|v\| & \text{for } 0 \neq v \in E^c(x), \\
\|Tf(v)\| &< \lambda \|v\| & \text{for } 0 \neq v \in E^s(x).
\end{align*}
\]
Foliations

- E^u and E^s always integrate to foliations W^u and W^s.
Foliations

- E^u and E^s always integrate to foliations W^u and W^s.
- E^c sometimes integrates to a foliation W^c.
Foliations

- E^u and E^s always integrate to foliations W^u and W^s.
- E^c sometimes integrates to a foliation W^c.
- In this talk, W^c always exists.
Foliations

- E^u and E^s always integrate to foliations W^u and W^s.
- E^c sometimes integrates to a foliation W^c.
- In this talk, W^c always exists.
Non-differentiable Foliations

- In a hyperbolic system, the foliations W^u and W^s are C^1 smooth.
Non-differentiable Foliations

• In a hyperbolic system, the foliations W^u and W^s are C^1 smooth.

• In a partially hyperbolic system, the foliations W^u, W^c, and W^s are not differentiable, in general.
Non-differentiable Foliations

• In a hyperbolic system, the foliations W^u and W^s are C^1 smooth.

• In a partially hyperbolic system, the foliations W^u, W^c, and W^s are not differentiable, in general.
Non-differentiable Foliations

- In a hyperbolic system, the foliations W^u and W^s are C^1 smooth.
- In a partially hyperbolic system, the foliations W^u, W^c, and W^s are not differentiable, in general.
Non-differentiable Foliations

- In a hyperbolic system, the foliations W^u and W^s are C^1 smooth.
- In a partially hyperbolic system, the foliations W^u, W^c, and W^s are not differentiable, in general.
Non-differentiable Foliations

- In a hyperbolic system, the foliations W^u and W^s are C^1 smooth.
- In a partially hyperbolic system, the foliations W^u, W^c, and W^s are not differentiable, in general.
Non-differentiable Foliations

- In a hyperbolic system, the foliations W^u and W^s are C^1 smooth.

- In a partially hyperbolic system, the foliations W^u, W^c, and W^s are not differentiable, in general.
Non-differentiable Foliations

• In a hyperbolic system, the foliations W^u and W^s are C^1 smooth.

• In a partially hyperbolic system, the foliations W^u, W^c, and W^s are not differentiable, in general.
Non-differentiable Foliations

• In a hyperbolic system, the foliations W^u and W^s are C^1 smooth.

• In a partially hyperbolic system, the foliations W^u, W^c, and W^s are not differentiable, in general.
Non-differentiable Foliations

- In a hyperbolic system, the foliations W^u and W^s are C^1 smooth.

- In a partially hyperbolic system, the foliations W^u, W^c, and W^s are not differentiable, in general.
Leaf Conjugacy

- Does Franks-Manning extend to partially hyperbolic systems?
Leaf Conjugacy

• Does Franks-Manning extend to partially hyperbolic systems?

• Conjugacy is too strong for these systems.
Leaf Conjugacy

• Does Franks-Manning extend to partially hyperbolic systems?

• Conjugacy is too strong for these systems.

• Partially hyperbolic diffeomorphisms are leaf conjugate if there is a homeomorphism $h : M \to M$ such that

$$hg(L) = fh(L)$$

for every center leaf L of g.
Leaf Conjugacy

• Does Franks-Manning extend to partially hyperbolic systems?

• Conjugacy is too strong for these systems.

• Partially hyperbolic diffeomorphisms are leaf conjugate if there is a homeomorphism \(h : M \rightarrow M \) such that

\[hg(L) = fh(L) \]

for every center leaf \(L \) of \(g \).

• Is every partially hyperbolic \(f : \mathbb{T}^d \rightarrow \mathbb{T}^d \) leaf conjugate to its linearization?
The 3-torus

- \mathbb{T}^3 is the simplest manifold supporting partially hyperbolic diffeomorphisms.
The 3-torus

- \mathbb{T}^3 is the simplest manifold supporting partially hyperbolic diffeomorphisms.

- $f_0 : \mathbb{T}^3 \to \mathbb{T}^3$ lifts to $f : \mathbb{R}^3 \to \mathbb{R}^3$.
The 3-torus

• \mathbb{T}^3 is the simplest manifold supporting partially hyperbolic diffeomorphisms.

• $f_0 : \mathbb{T}^3 \to \mathbb{T}^3$ lifts to $f : \mathbb{R}^3 \to \mathbb{R}^3$.

• Brin, Burago, and Ivanov show W^u_f and W^s_f are quasi-isometric foliations.
The 3-torus

- \mathbb{T}^3 is the simplest manifold supporting partially hyperbolic diffeomorphisms.

- $f_0 : \mathbb{T}^3 \to \mathbb{T}^3$ lifts to $f : \mathbb{R}^3 \to \mathbb{R}^3$.

- Brin, Burago, and Ivanov show W^u_f and W^s_f are quasi-isometric foliations.

- For x and y on the same unstable leaf,

\[d_u(x, y) < Q \cdot \|x - y\|. \]
The 3-torus

- \mathbb{T}^3 is the simplest manifold supporting partially hyperbolic diffeomorphisms.
- $f_0 : \mathbb{T}^3 \to \mathbb{T}^3$ lifts to $f : \mathbb{R}^3 \to \mathbb{R}^3$.
- Brin, Burago, and Ivanov show W^u_f and W^s_f are quasi-isometric foliations.
- For x and y on the same unstable leaf,

 \[d_u(x, y) < Q \cdot \|x - y\| \]

- A leaf cannot return close to itself.
The 3-torus

• \mathbb{T}^3 is the simplest manifold supporting partially hyperbolic diffeomorphisms.

• $f_0 : \mathbb{T}^3 \to \mathbb{T}^3$ lifts to $f : \mathbb{R}^3 \to \mathbb{R}^3$.

• Brin, Burago, and Ivanov show W^u_f and W^s_f are quasi-isometric foliations.

• For x and y on the same unstable leaf,

$$d_u(x, y) < Q \cdot \|x - y\|.$$

• A leaf cannot return close to itself.
Main Theorem

Theorem. If $f_0 : \mathbb{T}^d \to \mathbb{T}^d$ is partially hyperbolic
Main Theorem

Theorem. If $f_0 : \mathbb{T}^d \to \mathbb{T}^d$ is partially hyperbolic with lifting $f : \mathbb{R}^d \to \mathbb{R}^d$,

Main Theorem

Theorem. If $f_0 : \mathbb{T}^d \to \mathbb{T}^d$ is partially hyperbolic with lifting $f : \mathbb{R}^d \to \mathbb{R}^d$, W^u_f and W^s_f are quasi-isometric,
Main Theorem

Theorem. If \(f_0 : \mathbb{T}^d \to \mathbb{T}^d \) is partially hyperbolic with lifting \(f : \mathbb{R}^d \to \mathbb{R}^d \),

\[W^u_f \text{ and } W^s_f \text{ are quasi-isometric,} \]

and \(\dim E^c_f = 1 \),
Main Theorem

Theorem. If $f_0 : \mathbb{T}^d \to \mathbb{T}^d$ is partially hyperbolic with lifting $f : \mathbb{R}^d \to \mathbb{R}^d$,

W_f^u and W_f^s are quasi-isometric,

and $\dim E^c_f = 1$,

then f_0 is leaf conjugate to its linearization.
Main Theorem

Theorem. If $f_0 : \mathbb{T}^d \to \mathbb{T}^d$ is partially hyperbolic with lifting $f : \mathbb{R}^d \to \mathbb{R}^d$, W_f^u and W_f^s are quasi-isometric, and $\dim E_f^c = 1$, then f_0 is leaf conjugate to its linearization.

Corollary. Every partially hyperbolic diffeomorphism on \mathbb{T}^3 is leaf conjugate to its linearization.
Constructing g

- Use $f_0^* : \pi_1(\mathbb{T}^d) \to \pi_1(\mathbb{T}^d)$ to define a linear map $g : \mathbb{R}^d \to \mathbb{R}^d$.

Constructing g

- Use $f_{0*} : \pi_1(\mathbb{T}^d) \to \pi_1(\mathbb{T}^d)$ to define a linear map $g : \mathbb{R}^d \to \mathbb{R}^d$.

- Using the constants $\lambda < \hat{\gamma} < 1 < \gamma < \mu$ for f, define a partially hyperbolic splitting for g.

![Diagram]

1

s c u
Constructing g

- Use $f_{0*} : \pi_1(\mathbb{T}^d) \to \pi_1(\mathbb{T}^d)$ to define a linear map $g : \mathbb{R}^d \to \mathbb{R}^d$.

- Using the constants $\lambda < \hat{\gamma} < 1 < \gamma < \mu$ for f, define a partially hyperbolic splitting for g.

```
\begin{tikzpicture}
  \draw[->] (0,0) -- (10,0);
  \draw[blue, ultra thick] (1,0) rectangle (3,0.5);
  \node at (1.5,0) {$\lambda$};
  \draw[green, ultra thick] (4,0) rectangle (6,0.5);
  \node at (5,0) {$\hat{\gamma}$};
  \draw[red, ultra thick] (7,0) rectangle (9,0.5);
  \node at (8,0) {$\mu$};
  \node at (2,0) {$s$};
  \node at (5,0) {$c$};
  \node at (8,0) {$u$};
\end{tikzpicture}
```
Constructing g

- Use $f_{0*} : \pi_1(\mathbb{T}^d) \to \pi_1(\mathbb{T}^d)$ to define a linear map $g : \mathbb{R}^d \to \mathbb{R}^d$.

- Using the constants $\lambda < \hat{\gamma} < 1 < \gamma < \mu$ for f, define a partially hyperbolic splitting for g.

\[
\begin{array}{c|c|c|c|c}
\lambda & \hat{\gamma} & 1 & \gamma & \mu \\
\hline
\end{array}
\]
Constructing g

- Use $f_0^* : \pi_1(\mathbb{T}^d) \to \pi_1(\mathbb{T}^d)$ to define a linear map $g : \mathbb{R}^d \to \mathbb{R}^d$.

- Using the constants $\lambda < \hat{\gamma} < 1 < \gamma < \mu$ for f, define a partially hyperbolic splitting for g.

![Diagram](image)

\[\lambda_1 \quad \hat{\gamma} \quad 1 \quad \gamma \quad \mu \]
Constructing g

- Use $f_{0*} : \pi_1(\mathbb{T}^d) \to \pi_1(\mathbb{T}^d)$ to define a linear map $g : \mathbb{R}^d \to \mathbb{R}^d$.

- Using the constants $\lambda < \hat{\gamma} < 1 < \gamma < \mu$ for f, define a partially hyperbolic splitting for g.

\[
\begin{array}{cccccc}
\lambda_1 & \lambda & \hat{\gamma} & 1 & \lambda_2 & \gamma & \mu \\
\end{array}
\]
Constructing g

- Use $f_{0*} : \pi_1(\mathbb{T}^d) \to \pi_1(\mathbb{T}^d)$ to define a linear map $g : \mathbb{R}^d \to \mathbb{R}^d$.

- Using the constants $\lambda < \hat{\gamma} < 1 < \gamma < \mu$ for f, define a partially hyperbolic splitting for g.

[Diagram with eigenvalues λ_1, λ_2, λ_3 and $\hat{\gamma}$]
Constructing g

- Use $f_{0*} : \pi_1(\mathbb{T}^d) \rightarrow \pi_1(\mathbb{T}^d)$ to define a linear map $g : \mathbb{R}^d \rightarrow \mathbb{R}^d$.

- Using the constants $\lambda < \hat{\gamma} < 1 < \gamma < \mu$ for f, define a partially hyperbolic splitting for g.

\[\begin{array}{ccccccc}
\lambda_1 & \lambda & \hat{\gamma} & 1 & \lambda_2 & \gamma & \mu & \lambda_3 \\
\hline
\end{array} \]

s
Constructing g

- Use $f_{0*} : \pi_1(\mathcal{T}^d) \to \pi_1(\mathcal{T}^d)$ to define a linear map $g : \mathbb{R}^d \to \mathbb{R}^d$.

- Using the constants $\lambda < \hat{\gamma} < 1 < \gamma < \mu$ for f, define a partially hyperbolic splitting for g.

\[
\begin{array}{ccccccc}
\lambda_1 & \lambda \hat{\gamma} & 1 & \lambda_2 & \gamma & \mu & \lambda_3 \\
& s & & & c & & \\
\end{array}
\]
Constructing g

- Use $f_{0*} : \pi_1(\mathbb{T}^d) \to \pi_1(\mathbb{T}^d)$ to define a linear map $g : \mathbb{R}^d \to \mathbb{R}^d$.
- Using the constants $\lambda < \hat{\gamma} < 1 < \gamma < \mu$ for f, define a partially hyperbolic splitting for g.

\[\lambda_1 \quad \lambda \quad \hat{\gamma} \quad 1 \quad \lambda_2 \quad \gamma \quad \mu \quad \lambda_3\]

\[s \quad c \quad u\]
Constructing g

- Use $f_0* : \pi_1(\mathbb{T}^d) \to \pi_1(\mathbb{T}^d)$ to define a linear map $g : \mathbb{R}^d \to \mathbb{R}^d$.
- Using the constants $\lambda < \hat{\gamma} < 1 < \gamma < \mu$ for f, define a partially hyperbolic splitting for g.

Note, the splitting

\[T_xM = E^u_g \oplus E^c_g \oplus E^s_g \]

is independent of $x \in M = \mathbb{T}^d$.
Comparing Foliations

- Compare the foliations of f to the flat, linear foliations of g.
Comparing Foliations

• Compare the foliations of f to the flat, linear foliations of g.

• W^s_f tangent to E^s_f:

$$\frac{x - y}{\|x - y\|} \rightarrow E^s_f \quad \text{as} \quad d_s(x, y) \rightarrow 0$$
Comparing Foliations

• Compare the foliations of f to the flat, linear foliations of g.

• W^s_f tangent to E^s_f:

$$\frac{x - y}{\|x - y\|} \to E^s_f \quad \text{as} \quad d_s(x, y) \to 0$$

• What if $d_s(x, y) \to \infty$?
Comparing Foliations

• Compare the foliations of f to the flat, linear foliations of g.

• W^s_f tangent to E^s_f:

$\frac{x - y}{\|x - y\|} \to E^s_f$ as $d_s(x, y) \to 0$

• What if $d_s(x, y) \to \infty$?

$\frac{x - y}{\|x - y\|} \to E^s_g$
Three Scales
Three Scales

\[E_s(x) \]
\[E_c(x) \]
\[E_u(x) \]
\[W_s(x) \]
\[W_c(x) \]
\[W_u(x) \]
Shrinking Stable Segments
Shrinking Stable Segments
Shrinking Stable Segments
Shrinking Stable Segments

- With quasi-isometry, the endpoints shrink together.
Shrinking Stable Segments

- With quasi-isometry, the endpoints shrink together.
Shrinking Stable Segments

- With quasi-isometry, the endpoints shrink together.
Shadowing

- Take x and y far apart on the same stable leaf.
Shadowing

• Take x and y far apart on the same stable leaf.

• $f^k(x) - f^k(y)$ shrinks exponentially as k increases.
Shadowing

• Take x and y far apart on the same stable leaf.

• $f^k(x) - f^k(y)$ shrinks exponentially as k increases.

• Since $f_{0*} = g_{0*}$, so must $g^k(x) - g^k(y)$.
Shadowing

- Take x and y far apart on the same stable leaf.
- $f^k(x) - f^k(y)$ shrinks exponentially as k increases.
- Since $f_{0*} = g_{0*}$, so must $g^k(x) - g^k(y)$.
Shadowing

- Take x and y far apart on the same stable leaf.
- $f^k(x) - f^k(y)$ shrinks exponentially as k increases.
- Since $f_{0*} = g_{0*}$, so must $g^k(x) - g^k(y)$.
Shadowing

• Take x and y far apart on the same stable leaf.

• $f^k(x) - f^k(y)$ shrinks exponentially as k increases.

• Since $f_0^* = g_0^*$, so must $g^k(x) - g^k(y)$.
Shadowing

- Take x and y far apart on the same stable leaf.
- $f^k(x) - f^k(y)$ shrinks exponentially as k increases.
- Since $f_0* = g_0*$, so must $g^k(x) - g^k(y)$.

\[
\begin{align*}
&f^k(x) - f^k(y) \\
&g^k(x) - g^k(y)
\end{align*}
\]
Shadowing

• Take \(x \) and \(y \) far apart on the same stable leaf.

• \(f^k(x) - f^k(y) \) shrinks exponentially as \(k \) increases.

• Since \(f_{0*} = g_{0*} \), so must \(g^k(x) - g^k(y) \).
Center Leaves

- Every center leaf of f lies in a cylinder of radius R_c,

\[
B_{R_c}(W^c_g(x)) \rightarrow \begin{aligned}
W^c_f(x) \\
W^c_g(x)
\end{aligned}
\]
Center Leaves

• Every center leaf of f lies in a cylinder of radius R_c,

• but a priori the center leaf may be a circle.
Pseudoleaves

- The us-pseudoleaf of f at x:

$$W_f^{us}(x) = \bigcup_{y \in W_f^u(x)} W_f^s(y).$$
Proper Embeddings

- The us-pseudoleaf is a properly embedded hyperplane.
Proper Embeddings

- The \textit{us}-pseudoleaf is a properly embedded hyperplane.
Proper Embeddings

• The us-pseudoleaf is a properly embedded hyperplane.
Unique Intersection

- A center leaf intersects a pseudoleaf at most once.
Unique Intersection

- A center leaf intersects a pseudoleaf at most once.
Unique Intersection

- A center leaf intersects a pseudoleaf at most once.
Unique Intersection

- A center leaf intersects a pseudoleaf at most once.
Unique Intersection

• A center leaf intersects a pseudoleaf at most once.
$W^c_f(x)$ is not a Circle

$W^c_f(x)$

x
$W^c_f(x)$ is not a Circle
$W^c_f(x)$ is Properly Embedded
$W_c^c(x)$ is Properly Embedded
Existence of Intersection

• Each pseudoleaf lies roughly in the $E_g^u \oplus E_g^s$ direction.
Existence of Intersection

- Each pseudoleaf lies roughly in the $E^u_g \oplus E^s_g$ direction.
- Each center leaf lies in the E^c_g direction.
Existence of Intersection

• Each pseudoleaf lies roughly in the $E_g^u \oplus E_g^s$ direction.

• Each center leaf lies in the E_g^c direction.

• As these subspaces are transverse, every pseudoleaf intersects every center leaf exactly once.
Franks-Manning

Let $f : \mathbb{R}^d \to \mathbb{R}^d$ be hyperbolic with linearization $g : \mathbb{R}^d \to \mathbb{R}^d$.
Franks-Manning

- Let $f : \mathbb{R}^d \to \mathbb{R}^d$ be hyperbolic with linearization $g : \mathbb{R}^d \to \mathbb{R}^d$.
- Find h such that $h \circ g = f \circ h$.

Franks-Manning

• Let \(f : \mathbb{R}^d \to \mathbb{R}^d \) be hyperbolic with linearization \(g : \mathbb{R}^d \to \mathbb{R}^d \).

• Find \(h \) such that \(h \circ g = f \circ h \).

• \(h(x) \) is the unique point such that \(f^n(h(x)) \) shadows \(g^n(x) \).
Franks-Manning

• Let $f : \mathbb{R}^d \to \mathbb{R}^d$ be hyperbolic with linearization $g : \mathbb{R}^d \to \mathbb{R}^d$.

• Find h such that $h \circ g = f \circ h$.

• $h(x)$ is the unique point such that $f^n(h(x))$ shadows $g^n(x)$.
• Let \(f : \mathbb{R}^d \to \mathbb{R}^d \) be hyperbolic with linearization \(g : \mathbb{R}^d \to \mathbb{R}^d \).

• Find \(h \) such that \(h \circ g = f \circ h \).

• \(h(x) \) is the unique point such that \(f^n(h(x)) \) shadows \(g^n(x) \).
Franks-Manning

• Let \(f : \mathbb{R}^d \to \mathbb{R}^d \) be hyperbolic with linearization \(g : \mathbb{R}^d \to \mathbb{R}^d \).

• Find \(h \) such that \(h \circ g = f \circ h \).

• \(h(x) \) is the unique point such that \(f^n(h(x)) \) shadows \(g^n(x) \).
Franks-Manning

- Let $f : \mathbb{R}^d \to \mathbb{R}^d$ be hyperbolic with linearization $g : \mathbb{R}^d \to \mathbb{R}^d$.
- Find h such that $h \circ g = f \circ h$.
- $h(x)$ is the unique point such that $f^n(h(x))$ shadows $g^n(x)$.
Franks-Manning

- Let $f : \mathbb{R}^d \to \mathbb{R}^d$ be hyperbolic with linearization $g : \mathbb{R}^d \to \mathbb{R}^d$.
- Find h such that $h \circ g = f \circ h$.
- $h(x)$ is the unique point such that $f^n(h(x))$ shadows $g^n(x)$.
Franks-Manning

- Let $f : \mathbb{R}^d \to \mathbb{R}^d$ be hyperbolic with linearization $g : \mathbb{R}^d \to \mathbb{R}^d$.
- Find h such that $h \circ g = f \circ h$.
- $h(x)$ is the unique point such that $f^n(h(x))$ shadows $g^n(x)$.
Franks-Manning

- Let $f : \mathbb{R}^d \rightarrow \mathbb{R}^d$ be hyperbolic with linearization $g : \mathbb{R}^d \rightarrow \mathbb{R}^d$.

- Find h such that $h \circ g = f \circ h$.

- $h(x)$ is the unique point such that $f^n(h(x))$ shadows $g^n(x)$.
Franks-Manning Reloaded

L
Franks-Manning Reloaded

\[g^n(\mathcal{L}) \]
Franks-Manning Reloaded
Franks-Manning Reloaded
Franks-Manning Reloaded

\[f_n(g^{-n}(\mathcal{L})) \]

\[g^n(\mathcal{L}) \]
Franks-Manning Reloaded

\[g^{-n}(\mathcal{L}) \]

\[g^n(\mathcal{L}) \]

\[f^{-n} \]
Franks-Manning Reloaded
A Conjugacy of Leaf Spaces

• Let C_f be the quotient space of center leaves of f.

 C_g the quotient space of center leaves of g.
A Conjugacy of Leaf Spaces

• Let C_f be the quotient space of center leaves of f.

• C_g the quotient space of center leaves of g.

• $H : C_g \rightarrow C_f$ is the unique map such that
A Conjugacy of Leaf Spaces

• Let C_f be the quotient space of center leaves of f.

C_g the quotient space of center leaves of g.

• $H : C_g \rightarrow C_f$ is the unique map such that

$$H g(\mathcal{L}) = f H(\mathcal{L}) \quad \text{and}$$
A Conjugacy of Leaf Spaces

- Let C_f be the quotient space of center leaves of f.
 C_g the quotient space of center leaves of g.
- $H : C_g \rightarrow C_f$ is the unique map such that
 \[
 Hg(\mathcal{L}) = fH(\mathcal{L}) \quad \text{and} \quad H(\mathcal{L} + z) = H(\mathcal{L}) + z \quad \text{for} \quad z \in \mathbb{Z}^d.
 \]
Characterizing f

- We know the topology of the leaves, and the directions in which they lie.
Characterizing f

- We know the topology of the leaves, and the directions in which they lie.
- We know how the leaves intersect.
Characterizing f

- We know the topology of the leaves, and the directions in which they lie.
- We know how the leaves intersect.
- $H : C_g \to C_f$ shows that f acts on center leaves as a hyperbolic linear map.
Characterizing f

• We know the topology of the leaves, and the directions in which they lie.

• We know how the leaves intersect.

• $H : C_g \rightarrow C_f$ shows that f acts on center leaves as a hyperbolic linear map.

• Now construct a leaf conjugacy $h_0 : \mathbb{R}^d \rightarrow \mathbb{R}^d$ from H.

Mapping Slab to Slab

To construct a leaf conjugacy $h_0 : \mathbb{R}^d \to \mathbb{R}^d$, first map one solid slab to another.

x_0
Mapping Slab to Slab

• To construct a leaf conjugacy $h_0 : \mathbb{R}^d \rightarrow \mathbb{R}^d$, first map one solid slab to another.
Mapping Slab to Slab

- To construct a leaf conjugacy \(h_0 : \mathbb{R}^d \to \mathbb{R}^d \), first map one solid slab to another.
Mapping Slab to Slab

• To construct a leaf conjugacy \(h_0 : \mathbb{R}^d \to \mathbb{R}^d \), first map one solid slab to another.
Mapping Slab to Slab

- To construct a leaf conjugacy $h_0 : \mathbb{R}^d \rightarrow \mathbb{R}^d$, first map one solid slab to another.
To construct a leaf conjugacy $h_0 : \mathbb{R}^d \rightarrow \mathbb{R}^d$, first map one solid slab to another.
To construct a leaf conjugacy \(h_0 : \mathbb{R}^d \rightarrow \mathbb{R}^d \), first map one solid slab to another.
Mapping Slab to Slab

- To construct a leaf conjugacy $h_0 : \mathbb{R}^d \rightarrow \mathbb{R}^d$, first map one solid slab to another.

- How to define the topological hyperplane σ?
Sections

Definition. A *section* is a continuous map $\sigma : C_f \to \mathbb{R}^d$ such that
Sections

Definition. A *section* is a continuous map $\sigma : C_f \rightarrow \mathbb{R}^d$ such that

$$\sigma(\mathcal{L}) \text{ is on the leaf } \mathcal{L} \text{ for } \mathcal{L} \in C_f.$$
Sections

Definition. A section is a continuous map $\sigma : C_f \to \mathbb{R}^d$ such that

$$\sigma(\mathcal{L}) \text{ is on the leaf } \mathcal{L} \text{ for } \mathcal{L} \in C_f.$$

Example. The pseudoleaf $W_f^{us}(x)$ defines a section

$$\sigma : C_f \to \mathbb{R}^d, \quad \mathcal{L} \mapsto \mathcal{L} \cap W_f^{us}(x).$$
Desirable Sections

- Unfortunately, pseudoleaves don’t make very good sections.
Desirable Sections

• Unfortunately, pseudoleaves don’t make very good sections.

• Need a section which is bounded in the E^c_g direction
Desirable Sections

• Unfortunately, pseudoleaves don’t make very good sections.

• Need a section which is bounded in the E^c_g direction and uniformly continuous.
Desirable Sections

• Unfortunately, pseudoleaves don’t make very good sections.

• Need a section which is bounded in the E_g^c direction and uniformly continuous.

• These properties hold for compact subsets of psuedoleaves.
Stitching

• Idea: Stitch together plaques of pseudoleaves to produce a global section.
Stitching

• Idea: Stitch together plaques of pseudoleaves to produce a global section.

• Perform stitching by a weighted average along each center leaf.

\[\mathcal{L} \in C_f \]
Stitching

• Idea: Stitch together plaques of pseudoleaves to produce a global section.

• Perform stitching by a weighted average along each center leaf.

$\mathcal{L} \in C_f$
Stitching

- Idea: Stitch together plaques of pseudoleaves to produce a global section.
- Perform stitching by a weighted average along each center leaf.
Stitching

• Idea: Stitch together plaques of pseudoleaves to produce a global section.

• Perform stitching by a weighted average along each center leaf.
Stitching

• Idea: Stitch together plaques of pseudoleaves to produce a global section.

• Perform stitching by a weighted average along each center leaf.
Stitching

• Idea: Stitch together plaques of pseudoleaves to produce a global section.

• Perform stitching by a weighted average along each center leaf.
Stitching

- Idea: Stitch together plaques of pseudoleaves to produce a global section.

- Perform stitching by a weighted average along each center leaf.
Stitching

• Idea: Stitch together plaques of pseudoleaves to produce a global section.

• Perform stitching by a weighted average along each center leaf.
Stitching

• Idea: Stitch together plaques of pseudoleaves to produce a global section.

• Perform stitching by a weighted average along each center leaf.
Stitching

• Idea: Stitch together plaques of pseudoleaves to produce a global section.

• Perform stitching by a weighted average along each center leaf.
Constructing a Global Section

• Take part of a pseudoleaf at a lattice point. Translate the plaques to other lattice points.
Constructing a Global Section

- Take part of a pseudoleaf at a lattice point. Translate the plaques to other lattice points.
Constructing a Global Section

• Take part of a pseudoleaf at a lattice point. Translate the plaques to other lattice points.
Constructing a Global Section

• Take part of a pseudoleaf at a lattice point. Translate the plaques to other lattice points.
Constructing a Global Section

• Take part of a pseudoleaf at a lattice point. Translate the plaques to other lattice points.

• Carefully average to yield a uniformly continuous global section.
Mapping Slab to Slab

\[x_0 \]
Mapping Slab to Slab

$W_{us}(x_0)$

x_0
Mapping Slab to Slab

$W_{\text{us}}(x_0)$

x_0

σ
Mapping Slab to Slab

\[W_{gs}(x_0) \]

\[x_0 + v \]

\[\sigma \]
Mapping Slab to Slab

\[W^\text{us}_g(x_0 + v) \]

\[W^\text{us}_g(x_0) \]

\[x_0 + v \]

\[x_0 \]

\[\sigma \]
Mapping Slab to Slab

\[W_{g,x_0}(x_0 + v) \]

\[W_{g,x_0}(x_0) \]

\[x_0 \]

\[x_0 + v \]
Mapping Slab to Slab

\[W_{us}^g(x_0 + v) \]

\[W_{us}^g(x_0) \]

\[x_0 + v \]

\[x_0 \]

\[\sigma + v \]

\[\sigma \]
Mapping Slab to Slab
Mapping Slab to Slab

\[W_g^u(x_0 + v) \]

\[W_g^c(y) \]

\[x_0 \]

\[y \]

\[\sigma + v \]

\[\sigma \]
Mapping Slab to Slab

\[W_{\text{us}}(x_0 + v) \]

\[W_{g}(x_0) \]

\[x_0 + v \]

\[x_0 \]

\[y \]

\[W_{c}(y) \]

\[H(W_{c}(y)) \]

\[\sigma + v \]

\[\sigma \]
Mapping Slab to Slab

\[W_g(x_0 + v) \]

\[W_{us}^c(y) \]

\[W_g(y) \]

\[H(W_g^c(y)) \]

\[\sigma + v \]

\[\sigma \]
Mapping Slab to Slab

\[W^u(x_0 + v) \]

\[W^c(y) \]

\[x_0 + v \]

\[x_0 \]

\[y \]

\[W^c(y) \]

\[
\sigma + v \\
\sigma \\
H(W^c(y))
\]
Mapping Slab to Slab

$$W_{us}(x_0 + v)$$

$$W_{us}(x_0)$$

$$W^c_g(y)$$

$$h_0(y)$$

$$H(W^c_g(y))$$

$$\sigma$$

$$\sigma + v$$

$$x_0 + v$$

$$x_0$$

$$y$$

$$h_0$$
A Leaf Conjugacy on \mathbb{R}^d

- Extend h_0 to all of \mathbb{R}^d by translating by multiples of v.
A Leaf Conjugacy on \mathbb{T}^d

- h_0 is a leaf conjugacy on \mathbb{R}^d,
A Leaf Conjugacy on \mathbb{T}^d

- h_0 is a leaf conjugacy on \mathbb{R}^d,

but there is no reason to think it descends to \mathbb{T}^d.
A Leaf Conjugacy on \mathbb{T}^d

- h_0 is a leaf conjugacy on \mathbb{R}^d,
 but there is no reason to think it descends to \mathbb{T}^d.
- For $z \in \mathbb{Z}^d$, define $h_z : \mathbb{R}^d \to \mathbb{R}^d$ as a translate of h_0:
 \[h_z(x) = h_0(x - z) + z. \]
Averaging

- Average over all h_z along the center leaves.
Averaging

- Average over all h_z along the center leaves.

\[W_g^c(x) \quad \Downarrow \quad H(W_g^c(x)) \]
Averaging

- Average over all h_z along the center leaves.
Averaging

• Average over all h_z along the center leaves.
Averaging

- Average over all h_z along the center leaves.
Averaging

- Average over all h_z along the center leaves.
Averaging

- Average over all h_z along the center leaves.
Averaging

- Average over all h_z along the center leaves.
Averaging

- Average over all h_z along the center leaves.
Averaging

- Average over all h_z along the center leaves.

$$W^c_g(x) \rightarrow H(W^c_g(x))$$
Averaging

- Average over all h_z along the center leaves.

- Find a \mathbb{Z}^d-invariant leaf conjugacy $h : \mathbb{R}^d \to \mathbb{R}^d$ that descends to \mathbb{T}^d.
Further Questions

- Franks-Manning extends to nilmanifolds and infranilmanifolds.
Further Questions

- Franks-Manning extends to nilmanifolds and infranilmanifolds.
- What is the partially hyperbolic extension?
Further Questions

• Franks-Manning extends to nilmanifolds and infranilmanifolds.
• What is the partially hyperbolic extension?
• Is \(\dim E^c_f = 1 \) necessary?
Further Questions

• Franks-Manning extends to nilmanifolds and infranilmanifolds.
• What is the partially hyperbolic extension?
• Is $\dim E^c_f = 1$ necessary?
• Is quasi-isometry necessary? Is it redundant for tori?
Further Questions

• Franks-Manning extends to nilmanifolds and infranilmanifolds.

• What is the partially hyperbolic extension?

• Is \(\dim E^c_f = 1 \) necessary?

• Is quasi-isometry necessary? Is it redundant for tori?

• Can we classify all partially hyperbolic diffeomorphisms on 3-manifolds?
The End
Asymptote: 2D & 3D Vector Graphics Language

http://asymptote.sf.net

(freely available under the GNU public license)