Non-monotone insurance contracts and their empirical consequences

Aloisio Araujoa,b, Humberto Moreirab,1

aInstituto Nacional de Matematica Pura e Aplicada, Estrada Dona Castorina, 110, 22460-320 Rio de Janeiro, RJ, Brazil
\textsuperset{b}Fundação Getulio Vargas, Praia de Botafogo, 190, 22253-040 Rio de Janeiro, RJ, Brazil

Abstract

The goal of this paper is to show the possibility of a non-monotonic relation between coverage and riskiness which is in contrast with the traditional literature of insurance models since the work of Rothschild and Stiglitz (1976). We present an insurance model where the insured agents have heterogeneity in risk aversion and prevention cost. Risk aversion is a continuous parameter correlated with prevention cost. In the case of positive correlation, more risk averse agents have higher prevention cost leading to a higher demand for coverage. Equivalently, the single crossing property (SCP) holds and implies a positive correlation between coverage and riskiness in equilibrium. On the other hand, if the correlation between risk aversion and prevention cost is negative, not only the SCP is violated, but also the monotonicity of contracts. In both cases riskiness is monotonic on risk aversion, but when the SCP fails coverage is not monotonic and there is discrete pooling: two different risk averse types (low and high) associated to the same contract. This implies that correlation between coverage and riskiness may have any sign. Moreover, we give an implication to disentangle single-crossing and non-single-crossing under zero correlation between coverage and riskiness: the monotonicity of coverage as a function of riskiness.

JEL Classification: H41, D82.

Keywords: Insurance contracts, non-single-crossing, non-monotonicity, zero correlation.

1Corresponding author.
E-mail addresses: aloisio@fgv.br (A. Araujo) and humberto@fgv.br (H. Moreira).
Phone: 55 21 2559 5928 (H. Moreira)
Fax: 55 21 2553 8821 (H. Moreira)
1 Introduction

The goal of this paper is to show the possibility of a non-monotone relation between coverage and riskiness for insurance models. The seminal paper by Rothschild and Stiglitz (1976) predicts the monotonicity property (MP): “contracts with more comprehensive coverage are chosen by agents with higher expected accident costs”. Since then, most of the models predict a positive correlation between insurance contract coverage and riskiness, implying that this claim might be quite robust. Seemingly, it does not require the single crossing property (SCP) and remains true when moral hazard or multidimensional screening are introduced (see Chiappori and Chassagnon (1997) and Villeneuve (1996), for instance).¹

In the empirical literature, Puelz and Snow (1994) were the pioneering reference in testing asymmetric information on automobile insurance market. Their results were consistent with the presence of asymmetric information. However, as pointed out by Chiappori and Salanié (2000), these results may be spurious because of omitted non-linear effects in the regressions. They proposed a more robust test for asymmetric information using a data base from French automobile insurance contracts. Chiappori and Salanié tested the validity of positive correlation between coverage and riskiness of the contract conditional on all observable variables. They measured ex-post riskiness as the occurrence of an accident during one year and reduced the class of contracts to two: partial and full insurance. Their conclusion was that they could not reject this correlation to be different from zero. If MP were valid, this would lead to imply no adverse selection for that data set.

In this paper we argue that the MP is in fact dependent on the monotonicity assumptions of the coverage demand with respect to unobservable characteristics the insured agents have. Specifically, the MP is dependent on the SCP which is the monotonicity of the marginal utility of coverage with respect to the insurees’ characteristics. Since the traditional contract theory literature usually assumes the SCP which implies a monotonic relation between the contract variables, it is not surprising that the MP naturally emerges in this context. The problem, however, in relaxing the SPC is twofold: mathematically it is very hard to deal with the non-convexities that can appear when the SCP does not hold; and even if we are able to relax this assumption, is it not clear that the MP will not hold. In Araujo and Moreira (2001), this problem is treated in a specific monopolistic setting where the monotonicity does not always hold. Our aim here is to build an insurance model where the SCP and MP are not valid and the techniques of Araujo and Moreira (2001) can be applied.

We propose an insurance model with adverse selection and moral hazard. The insured agents are heterogeneous with respect to risk aversion and prevention cost. Differently from the standard literature, we borrow the Holmstrom and Milgrom (1987) framework of providing incentives for precautious behavior of an agent with constant risk aversion. We assume that there exists a perfect correlation between risk aversion and prevention cost. We carry out the analysis for both monopolistic and competitive markets and separate

¹The exceptions are Smart (2000) and Wambach (2000) where insurance customers have preferences differing in two dimensions that may break down the SCP. In the former these dimensions are degree of risk aversion and accident probability and the last are wealth and risk. Consistent with our finding, when SCP does not hold pooling may occur. However, in both papers types and outcomes have only two realizations and non-monotonicity cannot be analyzed.
the analysis in the usual benchmarks: symmetric information, pure moral hazard and moral hazard with adverse selection. In the symmetric information benchmark, there is full coverage and the correlation between coverage and riskiness is zero. In the pure moral hazard situation, under some mild regularity assumptions, the MP always holds.

Then, the interesting case is moral hazard with adverse selection where we study the correlation between risk aversion and prevention cost in two stylized cases. In the positive correlation case more risk averse agents have higher marginal cost of prevention. These two heterogeneities go in the same direction meaning that the more risk averse agents buy more insurance and then have less cautious behavior which reinforces the demand for coverage. Therefore, one might expect to see the MP as consequence of the self selection constraints and the SCP, i.e., the fact that the marginal utility of coverage increases with risk aversion.

In the negative correlation case, more risk averse agents have lower marginal cost of prevention. Thus, these two heterogeneities go in opposite directions, i.e., the marginal utility of coverage increases with risk aversion due to the reduction of risk premium and decreases due to the less costly preventive effort. The SCP holds if and only if one effect always prevails against the other. Otherwise, not only the SCP may be violated but also the MP may not hold because of the self selection constraints.

In the monopolistic setting, breaking the MP down is not a new result. Jullien et al. (1999) show that the preventive effort may be non-decreasing with respect to risk aversion (what they call the “non-responsive case”). Since they assume the SCP, coverage is monotonic with risk aversion. Ours is the “responsive case” where coverage may not be monotonic on risk aversion if the SCP fails.

In the competitive setting we use the perfect Bayesian equilibrium concept to sustain the actuarially fair contract (zero profit). Under the SCP, the equilibrium is separating, i.e., coverage and riskiness are monotonic on risk aversion, which leads to the MP. If the equilibrium is not separating, there may exist less and more risk averse insurees with the same coverage level in equilibrium. Then, there may be cross subsidies in equilibrium: low-risk individuals pay less and high-risk individuals pay more than the actuarial value of their insurance in the pooling set. Excessive premium arises in equilibrium because of non-single-crossing (see Smart (2000)). We indeed show that our quasi-separable equilibrium might be non-monotonic and then may have discrete pooling.

Although the non-monotonic relation between equilibrium coverage and riskiness is necessary to break the MP down, it is not obvious that it is sufficient. This is because the MP is the positive relation between coverage and the expected risk. However, we give an example where the MP does not hold. More strongly, we show that the correlation between coverage and riskiness can have any sign.

In short, our implications are: (i) under symmetric information, the correlation between coverage and riskiness is zero; (ii) under asymmetric information, if there is a positive correlation between risk aversion and prevention cost, then the MP holds and adverse selection cannot be distinguished from moral hazard; (iii) if there is a negative correlation between risk aversion and prevention cost, then the MP holds in the pure moral hazard case. However, adding adverse selection, the MP may fail and zero correlation between coverage and riskiness may occur with adverse selection whenever the SCP fails.

\[^2\]Since the SCP does not hold, there is no full separable equilibrium. We introduce the notion of quasi-separable equilibrium: lowest degree of pooling and highest coverage. See Appendix B for the details.
fails.

Therefore, under zero correlation between contract coverage and riskiness, our model

gives two possibilities: (i) no adverse selection (pure moral hazard or symmetric informa-

tion); (ii) adverse selection without the SCP, since the non-monotonicity may lead to zero
correlation without contradicting the presence of adverse selection. The monotonicity
between coverage and riskiness allows us to distinguish between case (i) and (ii).

The insurance model is presented in Section 2. The perfect correlation between adverse
selection parameters is treated in Section 3. The forth section presents our zero-correlation
result and discusses its relation with the presence of single-crossing and adverse selection.
The last section gives the concluding remarks.

2 The model

The insuree’s wealth \(\omega \) is normally distributed with mean \(e \) and (exogenous) variance \(\sigma^2 \),
where \(e \) is the preventive effort controlled by the insuree. Borrowing the Holmstrom and
Milgrom (1987) setup, we have a continuous-time model such that the insuree’s wealth is
a diffusion process whose drift, \(e \), she can control:

\[
d\omega_t = edt + \sigma dW_t,
\]

where \(\{W_t\}_{t \in [0,1]} \) is the standard Brownian motion. In this case, \(e \) is a sufficient statistic
for the account number of no loss that the insuree has along the total period of insurance.
More precisely, we can approximate this diffusion process by a binomial tree which has in
each node two outcomes: loss and no loss. So, drift is a proxy for safeness, which is the
probability of no accident in the model with only two outcomes (see Hellwig and Schmidt
(2002)).

The cost of prevention is a function of \(e \) and a parameter \(\eta \). The insuree’s constant
absolute risk aversion \(\theta \) and \(\eta \) are adverse selection parameters.

By introducing these two heterogeneities that link the ex-ante adverse selection with
the ex-post moral hazard we have a mixed model\(^5\). We assume that \(\eta \) is not known by
both the insuree and the insurance company, but it is correlated with \(\theta \) such that the
insuree’s expected precaution given \(\theta \) is \(C(e, \theta) \). As we will see in the sequel of the paper,
the sign of the correlation is not important per se. What is important is its effect on the
marginal cost of prevention and, in particular, whether the marginal utility of preventive
effort is monotonic on \(\theta \). We assume standard properties for \(C \):\(^6\)

\[
\text{A0. } C_e \geq 0 = C_e(0, \cdot), C_e(\theta, \infty) = \infty, \text{ for all } \theta, C_{ee} > 0 \text{ and } C_{eee} > 0.
\]

\(^3\)Holmstrom and Milgrom (1987) show that the optimal insurance contract for the whole period must
give the agent a bonus that depends linearly on the number of periods in which the wealth increased,
and \(\omega \) (final wealth) is a sufficient statistics for this number.

\(^4\)Although this is not a standard insurance model, we adopted this framework in order to benefit from
the quasi-linear specification derived from the linearity of optimal and/or equilibrium contracts. Since
standard insurance models are not quasi-linear, we would have more technical difficulties to deal with
them. See Landsberber and Meilijson (1999) for a more general model.

\(^5\)That is, a model where adverse selection is followed by moral hazard. See Laffont and Martimort
(2002), ch. 7 for definitions of mixed models.

\(^6\)From now on we will use the following notation for derivatives: \(C_e \) is the partial derivative of \(C \) with
respect to \(e \) and so forth; \(e(\theta) \) is the derivative of \(e \) with respect to \(\theta \).
The sign of the cross derivatives will play an important role for the SCP and will be explored in the next section.

The insuree’s utility depends on the wealth and effort and is represented by the CARA specification:

\[-\exp[-\theta (\omega - C(e, \theta))].\]

The insurance company(ies) is (are) risk-neutral.

The stages of the model are the following: (1) each insurance company chooses the menu of contracts (indexed by the insuree’s parameters); (2) the insuree (self) selects his contract; (3) the insuree decides his level of prevention; (4) finally, the state of nature is realized and the contracts are enforced.

We study the following benchmarks: first best, pure moral hazard and moral hazard with adverse selection. In the first case, there is no asymmetric information problem: the insurance company can write contracts on both preventive effort and risk aversion. In the second case, the insurance company can verify only the insuree’s risk aversion and in the third it cannot.

2.1 First best

The insurance company can control for preventive effort and risk aversion. Therefore, the only important issue here is the risk sharing between the insurance company and the insurees. Since the insurance company is risk neutral and the insurees are risk averse, the optimal allocation of risk satisfies the (Borch’s) rule:

\[1 = C_e(e, \theta),\]

the marginal benefit of risk reduction is equal to its marginal cost. Moreover, the insurance company expropriates all the insuree’s rent: the insuree’s indirect utility is equal to her reservation utility outside the contract. Denote \(e_{FB}(\theta)\) the solution of (1).

There are many ways to implement this solution under complete information. To make the parallel with the other cases, we use the full insurance implementation (see the next subsection for its description).

2.2 Pure moral hazard

Another important benchmark is when insurance companies can control for risk aversion. Then, there is no adverse selection and the insurance problem is a pure moral hazard one.

From Holmstrom and Milgrom (1987) the optimal contract with moral hazard is linear:

\[(1 - c)\omega + \beta,\]

where \(c\) is the coverage and \(\beta\) is the reimbursement. Observe that \(c\) measures the standard deviation of the amount of wealth to which the insuree is not exposed to (or equivalently, the one that insurance companies face): \(V[(1 - c)\omega + \beta - \omega]^{1/2} = c\).

In terms of the agent’s (insuree’s) certainty equivalent, her expected utilities in the
space of linear contracts \((c, \beta)\) can be equivalently represented by\(^7\)

\[
(1 - c)e + \beta - C(e, \theta) - \frac{\sigma^2}{2}\theta(1 - c)^2.
\]

Thus, given a contract \((c, \beta)\), the optimal effort is determined by the first order condition of the incentive compatibility constraint:

\[
1 - c = C_e(e, \theta).
\] (2)

the equalization of its marginal benefit and cost.

Let \(e(c, \theta)\) be the induced effort by the contract \((c, \beta)\) for a type \(\theta\), i.e., the implicit solution of (2). Observe that \(A0\) implies that \(e(c, \theta)\) is well defined and that (2) is necessary and sufficient for optimality. Taking into account (2), the insuree’s indirect utility function is quasi-linear

\[
v(c, \theta) + \beta,
\]

where \(v(c, \theta) = (1 - c)e(c, \theta) - C(e(c, \theta), \theta) - \frac{\sigma^2}{2}\theta(1 - c)^2\).

The insurance company’s expected profit which is the expected social surplus net the insuree’s utility:

\[
U(c, \beta, \theta) = e(c, \theta) - [(1 - c)e(c, \theta) + \beta] = ee(c, \theta) - \beta
\]
\[
= e(c, \theta) - C(e(c, \theta), \theta) - \frac{\sigma^2}{2}\theta(1 - c)^2 - v(c, \theta) - \beta.
\]

Monopolistic case

The single insurance company maximizes expected profit subject to the individual rationality (IR) or participation constraint:

\[
\max_{(c, \beta, \theta)} U(c, \beta, \theta)
\]
\[
\text{s.t. } v(c, \theta) + \beta \geq w_0(\theta)
\]

where the IR constraint guarantees at least the type \(\theta\) agent’s the null contract, \(w_0(\theta) = v(0, \theta)\).

Competitive case

There are at least two insurance companies competing a la Bertrand. This means that the equilibrium insurance contract is characterized by the maximization of the insuree’s utility given the zero profit condition of the insurance companies and the insuree participates (the IR constraint is satisfied). Therefore, the characterization of the monopolistic optimal or the competitive equilibrium contract is the same: it is the maximization of the

\(^7\)We are using the well known identity:

\[
E[\exp(\omega)] = \exp[E(\omega) + .5V(\omega)]
\]

where \(\omega\) is normally distributed, \(E\) is the expectation and \(V\) the variance operators.
social surplus which is the sum of the insurance company and insuree utilities. The only difference between the two cases is who gets the rent.

In Rothschild and Stiglitz (1976), risk is the probability of bad state of nature and also the consumer’s type. In our case, the state space is infinite and the type is the insuree’s risk aversion. However, in the Holmstrom and Milgrom (1987) framework the optimal preventive effort, e, is constant over time (because of the absence of income effects under CARA utility functions) and, therefore, $\pi = 1 - e$ is a non-ambiguous proxy for riskiness. It is the reciprocal measure of precautious behavior or the (absolute\footnote{For the purpose of this paper, the choice of this specific absolute measure does not matter, since we are interested in the correlation between riskiness and coverage. Another possibility is a relative measure like the decrease in effort with respect to the first best level.}) decrease in preventive effort due to risk aversion.

Definition 1. Given a contract (c, β) faced by an agent with coefficient of risk aversion θ and induced preventive effort $e(c, \theta)$, we define

$$\pi(c, \theta) := 1 - e(c, \theta)$$

as her riskiness on (c, β), respectively.9

Remark (First-best implementation). We can describe the first best contract using the linear specification. It has full coverage and the reimbursement is the insuree’s opportunity cost

$$c^{FB}(\theta) = 1$$
$$\beta^{FB}(\theta) = w_0(\theta)$$

for each type θ. However, since the preventive effort is enforceable, the first-best incentive power is one (see (1)).

Taking the implicit derivative of (1) we get:

$$\dot{e}^{FB}(\theta) = - C_{\dot{e}e}(e^{FB}(\theta), \theta) C_{ee}(e^{FB}(\theta), \theta)^{-1}.$$

Thus, the first-best riskiness is positively related with the marginal cost of prevention. In particular, the relation between first-best riskiness and risk aversion is driven by the monotonicity of the marginal cost of prevention with respect to risk aversion (see section 3 for the discussion under asymmetric information).

However, the first-best contract has constant full coverage which leads to a zero correlation between coverage and riskiness, independently how riskiness is related with risk aversion and how is the risk aversion distribution. For future reference, we establish our:

Implication 0: Under symmetric information, the correlation between coverage and riskiness is zero.

\footnote{We can also define a proxy for the contract premium. Let $\bar{w} = \max_{\theta} w_0(\theta)$ be the maximum opportunity cost of the economy and define such proxy for type θ as $p(\theta) = \bar{w} - w_0(\theta)$. What is important in this definition is that p is negative related with the opportunity cost of the agent, i.e., the higher the equivalent certainty is, the lower is the premium.}
2.3 Moral hazard and adverse selection

Now the insurance company cannot control for the parameters of the insurees. Taking into account (2) again, the problem now reduces to a one-dimensional screening program.

A direct mechanism (or contract) is a pair of functions that maps the announcement of types to allocations: \((c(\theta), \beta(\theta))\). Assume now that \(\theta\) has cumulative distribution \(F\) on \([\underline{\theta}, \overline{\theta}]\) and density \(f > 0\). From standard arguments of mechanism design,\(^{10}\) the insurance company program is restricted by the incentive compatibility and the participation constraints:

\[
V^{(c,\beta)}(\theta) \geq V^{(c,\beta)}(\hat{\theta}|\theta), \quad \text{for all } \theta, \hat{\theta} \in \Theta \tag{IC}
\]

\[
V^{(c,\beta)}(\theta) \geq w_0(\theta), \quad \text{for all } \theta \in \Theta \tag{IR}
\]

where \(V^{(c,\beta)}(\hat{\theta}|\theta) = v(c(\hat{\theta}), \theta) + \beta(\hat{\theta})\) is type \(\theta\) insuree’s indirect utility when she takes type \(\hat{\theta}\) contract and \(V^{(c,\beta)}(\theta) = V^{(c,\beta)}(\theta|\theta)\) is the type \(\theta\) insuree’s rent function.

From the envelope theorem, the first order condition of the IC constraint is equivalent to

\[
\frac{d}{d\theta} V^{(c,\beta)}(\theta) = v_\theta(c(\theta), \theta) \tag{3}
\]

which gives the rate at which the insuree’s rent must grow to elicit its information.

The analysis of the IC constraint depends strongly on how the risk aversion and the prevention cost are correlated. In standard adverse selection models, the well known SCP plays an important role for the characterization of implementable contracts. The SCP is the monotonicity of the marginal utility of coverage with respect to risk aversion. An important consequence of the SCP is that implementable contracts are exactly the monotonic ones (see Proposition 1 (ii) below).

In the next section we deal with two distinct cases: the positive and negative correlation between prevention cost and risk aversion. As we shall see, these cases are related to the validity or not of the SCP, which is behind the monotonicity of implementable contracts with respect to risk aversion.

3 Risk aversion and prevention cost relation

We will carry out the analysis in the positive correlation (single-crossing) where the marginal cost of prevention is increasing with risk aversion and the negative correlation (non-single-crossing) where the relation is reversed.

3.1 The positive correlation

In this case we assume that more risk averse agents have higher marginal prevention cost:

Assumption A1: \(C_{e\theta}(\epsilon, \theta) > 0.\)

\(^{10}\)According to the Revelation Principle, we can restrict ourselves to the direct and truthful mechanisms. Sung (2002) shows that linear contracts are optimal for mixed models of adverse selection before moral hazard like the one used here.
A1 immediately implies the SCP:
\[v_{e\theta}(c, \theta) > 0 \]
i.e., more risk averse agents have higher marginal utility of coverage.

Proposition 1 Suppose that A0 and A1 hold.

(i) Pure moral hazard: Suppose that \(\pi(c, \cdot) \) is non-decreasing function for each \(c \). Then, the optimal monopolistic and the competitive equilibrium coverage and riskiness are increasing functions of risk aversion.

(ii) Moral hazard with adverse selection: A contract \((c(\theta), \beta(\theta))\) satisfies the IC constraint (i.e., it is implementable) if and only if (3) is satisfied and \(c(\cdot) \) is non-decreasing.

Proof. (i) From the first equation of (6) in the Appendix A and A1 we have that \(e(\cdot, \theta) \) is increasing. By the assumption that \(\pi(c, \cdot) \) is non-decreasing, we get our result.

(ii) The cross derivative of \(v \) is:
\[v_{e\theta}(c, \theta) = \frac{C_{\theta e}(e, \theta)}{C_{ee}(e, \theta)} + \sigma^2 (1 - c). \]
Then, A0 and A1 imply that this derivative is always positive, i.e., the SCP holds. Using standard arguments (see Guesnerie and Laffont (1984)), the proposition is equivalent to the first and second order conditions of the IC constraints. They are necessary and sufficient conditions for implementability under the SCP. In this case, the first order condition is given by (3) and the second order condition by the monotonicity of \(c(\cdot) \). □

Proposition 1 (i) is simply a comparative statics on risk aversion in the pure moral hazard situation: the efficient risk sharing is to induce less preventive effort the higher the risk aversion is (since prevention is more costly for those types), by giving higher coverage. This leads to a positive relation between coverage and riskiness. The monotonicity condition on \(\pi(c, \cdot) \) says that for any coverage level the relation between risk aversion and riskiness is positive. It is a regularity condition, but it is critical for the validity of the positive correlation result in the pure moral hazard case (see Julien, et al. (1999)). In Appendix C we show that A1 and the constant sign of third derivatives of \(C \) imply this condition.

Proposition 1 (ii) shows that this positive relation remains true for incentive compatible coverage under moral hazard and adverse selection. Moreover, using (2), the induced risk\(^{11} \) \(\pi(\cdot) \) for a given implementable coverage \(c(\cdot) \) satisfies
\[\dot{\pi}(\theta) = \frac{\dot{c}(\theta) + C_{\theta e}(e, \theta)}{C_{ee}(e, \theta)} > 0 \]
i.e., \(\pi(\cdot) \) is also increasing.

Thus, Proposition 1 implies the MP because it is exactly the monotonicity relation between coverage \((c) \) and riskiness \((\pi) \):
\[\frac{dc}{d\pi} = \frac{\dot{c}(\theta)}{\dot{\pi}(\theta)} \geq 0. \]

\(^{11}\)With some abuse of notation, \(\pi(\cdot) \) denotes \(\pi(c(\cdot), \cdot) \).
In particular, there is a positive correlation between coverage and riskiness and the prediction on the correlation sign is the same with or without adverse selection. This implies also that the MP only cannot be used to separate moral hazard from adverse selection. This is consistent with previous works that generalize the MP (see Chiappori, et al. (2005)) and tries to distinguish adverse selection from moral hazard in the data set (see Abbring, et al. (2004, forthcoming) and Gardiol, et al. (2006)).

Implication 1. If there is a positive correlation between risk aversion and prevention cost, then the MP holds. Moreover, adverse selection cannot be distinguished from moral hazard.

3.2 The negative correlation

Suppose now a negative correlation between risk aversion and prevention cost. In particular, an *ex-ante* more (less) risk averse agent will be more (less) diligent *ex-post*, decreasing (increasing) his *ex-ante* marginal utility for high coverage.

Assumption A2: \(C_{\theta}(e, \theta) < 0 \).

First let us characterize the optimal monopolistic contract and the competitive equilibrium in the pure moral hazard situation.

Proposition 2 (Pure moral hazard) Suppose that A0 and A2 holds such that \(\pi(c, \cdot) \) is non-increasing function for each \(c \). Then the optimal monopolistic and competitive coverage and riskiness in the pure moral hazard case are decreasing functions of risk aversion.

Proof. The proof is analogous to Proposition 1(i). □

Proposition 2 is analogous to Proposition 1 (i), but with an inverse relation: the efficient risk sharing in the pure moral hazard is to induce more preventive effort the higher the risk aversion is (since preventive effort is less costly for this type) by giving less coverage. This also leads to a positive correlation between coverage and riskiness, i.e., the MP is also valid in this case. An example that fulfills the conditions of Proposition 2 is \(C(e, \theta) = d(e/\theta) \), where \(d', d'', d''' > 0 \).

Let us move to the case of moral hazard with adverse selection. An important issue is then the validity of the SCP, i.e., the constant sign of \(v_{c\theta}(c, \theta) \). Using standard arguments, besides the first order condition (3), the second order condition of the IC constraint is equivalent to the usual up-stream (down-stream) incentives: \(c \) is non-increasing (decreasing) when \(v_{c\theta}(c, \theta) > (<) 0 \). These are the monotonicity conditions.

When the SCP holds the local IC constraints are sufficient for implementability (see Guesnerie and Laffont (1984)). However, when the SCP is violated, they are in general only necessary conditions. In particular, suppose that an implementable \((c(\cdot), \beta(\cdot)) \) is such that \(c(\cdot) \) crosses two regions where the sign of \(v_{c\theta} \) changes. By the monotonicity conditions, this implementable coverage may be non-monotonic and then there may exist types, \(\theta \) and \(\hat{\theta} \), attached to the same coverage level \(c \) (discrete pooling). Thus, the first order condition of the incentive compatibility (3) implies that the marginal change of reimbursement with respect to marginal change of coverage must be the same:

\[
-\frac{d\beta}{dc} = v_c(c, \theta) = v_c(c, \hat{\theta})
\]
i.e., the cross stream incentive condition. In some particular cases (like the example studied in this paper) these conditions and the monotonicity conditions are sufficient for incentive compatibility. See Araujo and Moreira (2001) for a first treatment of principal-agent models without the SCP. We will apply this approach to the monopolistic insurance market and extend it to the competitive market.

Jullien et al. (2002) show that under monopoly provision of insurance, the preventive effort can be non-monotonic on risk aversion and in ours preventive effort always monotonic with risk aversion (even though, Jullien et al. (1999) claim that the monotonicity is the general case). We will show that if there is a negative correlation between risk aversion and prevention cost, coverage may not be monotonic on risk aversion and riskiness is decreasing on risk aversion.

De Meza and Webb (2000) are rather in the same spirit as ours: the less risk-averse agent is risk neutral and does not make any effort, and more risk-averse agents make more effort. Moreover, because of the non-monetary cost of effort, the SCP does not hold, which may lead to pooling in equilibrium. However, as their model features only two types of agents, they are unable to consider the emergence of non-monotonicity (there is no variation of contracts in equilibrium). In fact, in their model the presence of (exogenous) administrative costs deters some agents from purchasing (participating) whereas in ours all agents buy positive amounts of insurance. Thus, the non-monotonicity result (pooling) in our case is due to incentive reason whereas in De Meza and Webb’s is due to participation reasons.

In what follows we present an example where the ambiguity of the cross derivative sign might lead to the non-monotonicity between coverage and riskiness.

3.3 An example: quadratic cost of prevention

Assume that the cost of preventive effort is quadratic on e/θ:

$$\mathcal{C}(e, \theta) = \left(\frac{e}{\theta}\right)^2$$

which corresponds to the previous example for $d(e) = e^2$, and F is the uniform distribution on $[1, 2]$.

Given a contract (c, β), the optimal preventive effort is $e(c, \theta) = \theta^2(1 - c)$ and the pure moral hazard coverage is:

$$c^{pm}(\theta) = \frac{\sigma^2}{\sigma^2 + \theta}.$$

Under moral hazard with adverse selection the insuree’s cross derivative of the utility with respect to coverage and risk aversion is

$$v_{c\theta}(c, \theta) = (2\theta - \sigma^2)(1 - c)$$

(see the Appendix). The first term, $2\theta(1 - c)$, is the marginal benefit (due to A2) and the second, $\sigma^2(1 - c)$, is the marginal cost of risk premium in reducing coverage and raising risk aversion, respectively. Depending on what term predominates, the sign may be positive or negative. Formally, $\partial_{c\theta}v(c, \theta) \gtrless 0$ if and only if $\theta \leq \frac{\sigma^2}{2}$. Thus, there are two extreme situations where the SCP holds: $\sigma^2 \leq 2$ or $\sigma^2 \geq 4$. For intermediate values, the SCP is violated.
Let us analyze the monopolistic and competitive cases.

Monopolistic case

The insurance company maximizes the expected profit subject to the incentive compatibility and the participation constraints:

$$\max_{(c, \beta)} \mathbb{E}[U(c(\cdot), \beta(\cdot), \cdot)]$$

s.t. IC and IR.

See Appendix A for the characterization of the optimal contract. In what follows we provide only a description of it.

- **low variance** ($\sigma^2 \leq 2$): implementable coverages are non-increasing functions of risk aversion θ. The observation of ω is very informative about the preventive effort taken by the insuree. The insurance contract reflects more the screening aspect of the incentive scheme, which is driven by the fact that more risk averse types have lower marginal cost of prevention (A2).

- **high variance** ($\sigma^2 \geq 4$): implementable coverages are non-decreasing functions of θ. The cost of the risk premium increases with variance and, for high levels, the total marginal utility of coverage increases with risk aversion. Therefore, ω is less informative on the insuree’s prevention effort, also making the screening costly (in particular, there is much pooling).

- **intermediate variance** ($\sigma^2 \in (1, 2)$): the SCP does not hold, and then an implementable coverage still has to satisfy the up and downstream incentives: it must be non-decreasing (respectively, increasing) for $\theta \in [1, \sigma^2]$ (respectively, $\theta \in [\sigma^2, 2]$). For intermediate levels of variance, there is a combination of the previous two effects: coverage is non-decreasing for low risk averse types and non-increasing for high ones. Moreover, for each θ and $\hat{\theta}$ choosing the same level of coverage c, $v_c(c, \theta) = v_c(c, \hat{\theta})$ or $\hat{\theta} = \sigma^2 - \theta$.

In the last two cases, there is pooling in the optimal contract. However, the pooling interval can be of two types: continuous or discrete. We say that the pooling is continuous if there exists an interval of types that pool in the same contract level. Discrete pooling means that there are contract levels such that the set of types that pool in those levels is discrete but not singleton. The interval of types where there is discrete pooling is called discrete pooling interval.

The following two figures give the optimal coverage ($c_{o1}, ..., c_{o5}$) and riskiness ($\pi_1, ..., \pi_5$) for $\sigma^2 = 2, 2.5, 3, 3.5$ and 4, respectively. Observe that, differently from the usual case,

\[\hat{\theta} \text{ is not a function of } c, \text{ which greatly simplifies the analysis. For a more general case, the regions of positive and negative sign of } v_{c,\theta} \text{ are separated by the curve } v_{c,\theta} = 0. \text{ See Araujo and Moreira (2001) for details.}\]
discontinuities may appear when the SCP does not hold (see, for instance, \(co_2 \)). A discussion can be found in Araujo and Moreira (2001) for the monopolistic case and Appendix B for the competitive case below.

![Figure 1: coverage and riskiness for \(\sigma^2 = 2, 2.5, 3, 3.5 \) and 4.](image)

Competitive case

There are at least two identical insurance companies proposing contracts that specify a coverage \(c(\theta) \) and a fixed reimbursement \(\beta(\theta) \) for each report \(\theta \) by the insuree. The incentive compatibility and participation constraints remain the same as in the monopolistic case. Moreover, given an equilibrium contract \((c(\theta), \beta(\theta)) \), the optimal preventive effort of the agent with type \(\theta \) is also the same: \(e(\theta|\theta) \), where

\[
e(\hat{\theta}|\theta) = e(c(\hat{\theta}), \theta)
\]

is the effort of \(\theta \) when she announces to be type \(\hat{\theta} \). The main difference from the monopoly is that we impose the actuarially fair or balance constraint on the equilibrium contract due to competition among insurance firms. To support the actuarially fair constraint we will adopt the perfect Bayesian equilibrium concept:

Definition 2. A perfect Bayesian equilibrium (PBE) for the insurance model is a profile of strategies \(\{(c(\theta), \beta(\theta)), e(\cdot|\theta)\}_{\theta \in [\underline{\theta}, \overline{\theta}]} \) and ex-post beliefs \(\mu(\cdot|c) \) such that the following conditions are satisfied:

1. **Zero expected profit or actuarially fair constraint:**
 \[
 \beta(\theta) = c(\theta) \int e(\theta|\tilde{\theta})d\mu(\tilde{\theta}|c(\theta)).
 \]

2. **Maximization of the expected total surplus (best response of the insurees):**
 \[
 \theta \in \text{arg max} \beta(\tilde{\theta}) + v(c(\tilde{\theta}), \theta)\]
 \[
 \text{s.t. } \beta(\tilde{\theta}) + v(c(\tilde{\theta}), \theta) \geq w_0(\theta), \tilde{\theta} \in [\underline{\theta}, \overline{\theta}].
 \]

3. **Consistency of beliefs:** \(\mu(\theta|c) \) is the Bayesian updating given the best responses 1. and 2., i.e., it is the posteriori probability of \(\theta \) given \(c \), whenever it is well defined.
Refinement of equilibria. Since the concept of PBE leads to indeterminacy the important issue now is how to select an equilibrium. Wilson (1977), Rothschild and Stiglitz (1979) and Spence (1979) started a debate about the equilibrium concept in the context of adverse selection. Riley (1979) proposed a concept of reactive equilibrium that rules out all but a single equilibrium: the separating equilibrium, in the continuous type setup. We provide a criterion that selects a single equilibrium: the quasi-separable one, since full separability is not possible when the SCP does not hold. This concept tries to generalize the same features of the reactive equilibrium: separability and Pareto optimality.\(^\text{13}\)

Definition 3. A PBE is quasi-separable if the following conditions are satisfied:

1. Given a type in a pooling part, there is another pooling type such that their marginal utilities of coverage are the same.

2. There is no other PBE satisfying the previous condition giving at least the same coverage for every type and one type getting higher coverage.

The first condition says that if there is pooling, then the marginal utility of coverage must be equalized pairwise. This property is related to the (highest) degree of separability. In particular, only separable or discrete pooling or continuous pooling parts that are degenerated discrete pooling parts are possible. The second property is the Pareto selection criterion (high coverage). It pins uniquely the equilibrium down by giving the boundary condition.

Below we compute the quasi-separable equilibrium for the quadratic cost case.

- low variance \((0 < \sigma^2 \leq 2)\): the SCP holds and the quasi-separable equilibrium is decreasing with the highest coverage, i.e., with initial condition \(c(1) = 1\).

- high variance \((\sigma^2 \geq 4)\): again the SCP holds and the quasi-separable equilibrium is increasing with final condition \(c(2) = 1\).

- intermediate variance \((2 < \sigma^2 < 3)\): the equilibrium has two parts: discrete pooling on \([1, \sigma^2 - 1]\) and separation on \([\sigma^2 - 1, 2]\); the highest coverage is \(c^{pm}(\sigma^2/2) = 2/3\). Observe that there is a jump at \(\theta = \sigma^2 - 1\): for each coverage level in the pool interval the average riskiness is greater than the lowest riskiness in the pool interval (i.e., the highest risk averse insuree since riskiness decreases with risk aversion). Thus, moving from the pool to the separating interval, types higher than \(\sigma^2 - 1\) are immediately updated as lower coverages once they are fully revealed in equilibrium. Equivalently, the insuree’s indirect utility must be continuous at \(\sigma^2 - 1\) (see Appendix B).

- intermediate variance \((3 \leq \sigma^2 < 4)\): only low risk averse types are screened out on \([1, \sigma^2 - 2]\) with final condition \(c(\sigma^2 - 2) = 1\) and constant equal to 1 on \([\sigma^2 - 2, 2]\).

\(^{13}\)Cresta and Laffont (1987) also applied the definition of reactive equilibrium when the SCP holds in the context of insurance market. They discuss the value of information in the classical setup of the Riley (1979) model. The definition that follows is very much inspired in their work.
The same observation that we have done to distinguish continuous from discrete pooling in the monopolistic case is valid here.

Under A^2 with quadratic cost and uniform distribution, the following figures show the quasi-separable equilibrium coverage ($c_1, ..., c_6$) and riskiness ($\pi_1, ..., \pi_6$) for $\sigma^2 = 2.25, 2.5, 2.75, 3.25, 3.5$ and 3.75, respectively.

![Figure 2a: Equilibrium coverage and riskiness for $\sigma^2 = 2.25, 2.5$ and 2.75.](image)

![Figure 2b: Equilibrium coverage and riskiness for $\sigma^2 = 3.25, 3.5$ and 3.75.](image)

Therefore, we have the following:

Implication 2. Under negative correlation between risk aversion and prevention cost, if there is no adverse selection (pure moral hazard), then the MP holds. However, adding adverse selection may imply in a non-monotonic relation between coverage and riskiness.

4 Empirical consequences

We provide the link between the validity of the SCP and the sign of the correlation between coverage and riskiness. To understand this link, we have to analyze the MP when there are non-monotonicities in the relation between coverage and riskiness. Since the MP is the monotonicity of the expected riskiness with respect to risk aversion, we define this concept first. Fix a PBE with coverage c and riskiness π.
Definition 4. The ex-post riskiness given a coverage level is $E[\pi|c]$, taken with respect to the distribution of types.

Let us then consider the case with non-monotonicities. For instance, under $A2$ with quadratic cost and uniform distribution for risk aversion, the equilibrium relation between coverage and riskiness for $\sigma^2 = 2.25, 2.5$ and 2.75 (c_1, c_2 and c_3, respectively) is given in the following figure.

![Image of the function $c(\pi)$ for $\sigma^2 = 2.25, 2.5$ and 2.75.](image)

Figure 3: The function $c(\pi)$ for $\sigma^2 = 2.25, 2.5$ and 2.75.

A weaker measure of positive relation is the correlation between coverage and riskiness:

$$\rho = \text{corr}(c, \pi)$$

where “corr” means the correlation with respect to the distribution of θ. By the law of iterated expectations, this correlation is the same of coverage and ex-post riskiness:

$$\rho = \text{corr}(c, \pi) = \text{corr}(c, E[\pi|c]).$$

In particular, if MP is true, then this correlation must be positive. Therefore, to show the non-monotonicity of ex-post riskiness, it is enough to guarantee any sign of the correlation. This is exactly what we do in the following:

Proposition 3 Assume the presence of moral hazard and adverse selection and $A2$ with quadratic cost. If risk aversion is uniformly distributed on $[1, 2]$, then any sign of the correlation between coverage and riskiness is possible. In particular, the ex-post riskiness is not monotonic with respect to coverage.

Proof. The figure below gives ρ as a function of the variance $\sigma^2 \in [2, 4]$ (the interval where the SCP is violated) for the monopolistic and competitive cases, where the label m (c) means monopoly (competition).14

14We did a numerical routine in MATLAB to calculate these functions since there is no close form solution for these correlations.
Under monopoly provision of insurance, this proposition is similar to Jullien et al. (2000). However, since coverage is always monotonic on risk aversion in their case, the only way to obtain every sign of correlation between riskiness and coverage is when riskiness is a non-monotonic function of risk aversion. The novelty of our result is for the competitive case.

In the presence of moral hazard and adverse selection, if there is a negative correlation between risk aversion and prevention cost, the SCP might not hold, leading to (possibly) any sign of correlation between coverage and riskiness. From this perspective, the zero correlation result can be consistent with asymmetric information and non-single-crossing. The following proposition establishes when there is adverse selection in our model under zero correlation and it is straightforward from the previous discussions.

Proposition 4 Suppose that A0, A1 or A2 (with the appropriate monotonicity condition on π) hold.

(i) Under pure moral hazard, there is a positive relation between coverage and riskiness and their correlation must be zero.

(ii) Under moral hazard and adverse selection, if riskiness is monotonic on risk aversion and coverage is non-monotonic on riskiness, then the SCP does not hold. In this case all signs of the correlation between coverage and riskiness may be possible.

Proposition 4 (i) restates Proposition 1 and 2: if there is full information on risk aversion, then we have the pure moral hazard equilibrium which features a monotone relation between coverage and riskiness. In this case, the correlation between coverage and riskiness conditioning on all observable variables must be zero. Proposition 4 (ii) gives a necessary condition for single-crossing: coverage must be a monotonic function of riskiness.

Therefore, zero correlation can be consistent with the following two cases in our framework: no adverse selection or adverse selection without single-crossing. However, in the case of A2, the pure moral hazard equilibrium has coverage and riskiness decreasing functions of risk aversion. Thus, in order to disentangle the two cases under zero correlation,
between coverage and riskiness, it is enough to test the monotonicity of the relation between coverage and riskiness. Formally:

Proposition 5 Suppose that A0, A1 or A2 (with the appropriate monotonicity condition on π) hold. Under zero correlation between coverage and riskiness, there exist two possibilities: (i) no adverse selection if coverage is monotonic on riskiness or (ii) adverse selection consistent with non-single-crossing if coverage is non-monotonic on riskiness.

Casual evidences

As Chiappori and Salanié (2000), Dionne et al. (2001) provide a test for MP using data from a large private insurer in Quebec (Canada). They show that when nonlinearity of the risk classification variables are taken into account, the conditional independence of coverage and riskiness cannot be rejected. In a preliminary analysis of the data, they show an histogram of the relation between risk classes and observable deductible choices (contract coverage).

Figure 5 gives the percentage of people that prefer a $250 deductible (high coverage) instead of a $500 deductible (low coverage) according to each group of risk (1-13). As we can see, this relation is non-monotonic and there exists zero correlation (conditional independence) between coverage and riskiness.

![Figure 5: Classification of Risk in Dionne et al. (2001).](image)

Therefore, this relation is non-monotone under zero correlation between coverage and riskiness. Given the model developed in this paper, the casual observation of non-monotonicity might be in fact related with adverse selection and non-single-crossing instead of no adverse selection.

15 Finkelstein and McGarry’s (2004) shows another empirical evidence that zero correlation between coverage and riskiness does not imply necessarily the absence of adverse selection.
5 Conclusion

This paper shows, contrary to the traditional literature, the possibility of a non-monotonic relation between coverage and riskiness in insurance models. Also, it provides a theoretical insurance model where zero correlation between coverage and riskiness is consistent with asymmetric information. What drives the positive correlation is the SCP. When it is broken, there is a possibility of observing a non-monotonic relationship between coverage and risk aversion and, consequently, between coverage and riskiness when riskiness is monotonic on risk aversion. Moreover, we provide an implication of our model to disentangle single-crossing and non-single-crossing under the zero correlation result: the monotonicity of coverage as a function of riskiness. And, as a corollary, we show the necessity of another instrument for controlling the effect of omitted variable when the SCP does not hold. We argue that this procedure can be used as a refinement to check the validity of asymmetric information. Indeed, Dionne et al. (2001) is a (potential) casual evidence of the importance of this refinement test.

Acknowledgements

This research is supported by CNPq and CAPES of Brazil and Faperj of Rio de Janeiro. For their helpful comments, we thank Luis Braido Pierre-André Chiappori, Daniel Ferreira, Daniel Gottlieb, Pierre-Yves Geofard, Piero Gottardi, Richard Kihlstrom, Walter Novaes, Bernard Salanié, François Salanié and Marcos Tsuchida. A preliminary version of this paper was presented in the First General Equilibrium Workshop in Rio at EPGE/FGV (2006), the 57th European Meeting of the Econometric Society (2002), 2002 Latin American Meeting of the Econometric Society, XXII Encontro Brasileiro de Econometria (2001), IMPA, PUC-Rio, Université de Toulouse 1 and DELTA.

Appendix

Using the envelope theorem, the derivatives of \(v \) are:

\[
\begin{align*}
v_c(c, \theta) &= -e + \theta \sigma^2 (1 - c) \\
v_\theta(c, \theta) &= -\partial_\theta C(e, \theta) - \frac{\sigma^2}{2} (1 - c)^2 \\
v_{c\theta}(c, \theta) &= -\partial_\theta e + \sigma^2 (1 - c)
\end{align*}
\]

where \(e = e(c, \theta) \) and

\[
1 - c = C_e(e, \theta).
\]

Using the implicit function theorem,

\[
\begin{align*}
e_\theta(c, \theta) &= -\frac{C_{e\theta}(e, \theta)}{C_{ee}(e, \theta)} \\
e_c(c, \theta) &= -\frac{1}{C_{ee}(e, \theta)}
\end{align*}
\]

Appendix A: monopolistic optimal contract
Pure moral hazard. The first order condition of this program gives the well-known characterization of the optimal contract (see Holmstrom and Milgrom (1987)):

$$
1 - c(\theta) = C_e(e(c, \theta), \theta) = \frac{1}{1 + \sigma^2 \theta C_e(e(c, \theta), \theta)}
$$

(6)

$$
\beta(\theta) = w_0(\theta) - v(c(\theta), \theta)
$$

(7)

where (7) is the binding IR constraint, i.e., when θ is observable the insurance company can condition the contract coverage on risk aversion and make the insuree indifferent between participating or not.

Moral hazard and adverse selection. The IR constraint is equivalent to $r(\theta) = V^{(c, \beta)}(\theta) - w_0(\theta) \geq 0$, for $\theta \in [\tilde{\theta}, \tilde{\theta}]$. Taking the derivative with respect to θ and using (3) we have:

$$
r'(\theta) = \frac{(1 - c(\theta))e(c(\theta), \theta)}{\theta} - \frac{\sigma^2}{2} (1 - c(\theta))^2 - \frac{e(0, \theta)}{\theta} + \frac{\sigma^2}{2}.
$$

(3) and standard arguments of mechanism design literature imply that the monopolist’s virtual or relaxed profit function16 is:

$$
\Pi^i(c, \theta) = e(c, \theta) - C(e(c, \theta), \theta) - \frac{\sigma^2}{2} \theta (1-c)^2 + R^i(\theta) \left(C_\theta(e(c, \theta), \theta) + \frac{\sigma^2}{2} (1 - c)^2 \right) - V^{(c, \beta)}(i)
$$

where $R^i(\theta) = \begin{cases}
\frac{1-F(\theta)}{f(\theta)} & \text{if } i = 1 \\
-\frac{f(\theta)}{F(\theta)} & \text{if } i = 2
\end{cases}$ is the hazard rate. Depending on the case, $V^{(c, \beta)}(\bar{\theta}) = 0$ or $V^{(c, \beta)}(\underline{\theta}) = 0$.17

First, let us characterize the relaxed solution, i.e., when we only take into account the first and second order conditions of the IC constraint: $\partial_c \Pi^i(c, \theta) = 0$, i.e.,

$$
1 - c(\theta) = C_e(e(c, \theta), \theta) = \frac{1 + R^i(\theta) C_\theta(e(\theta), \theta)}{1 + \sigma^2 (\theta - R^i(\theta)) C_e(e(c, \theta), \theta)}
$$

$$
\beta(\theta) = \beta(\theta) + \int_0^{\tilde{\theta}} v_d(c(\tilde{\theta}), \tilde{\theta}) d\tilde{\theta} - v(c(\theta), \theta)
$$

where $e(\theta) = e(c(\theta), \theta)$ and the last equation is obtained solving (3).

Under the SCP, only the monotonicity of c is necessary and sufficient for implementability. If the SCP does not hold, Araujo and Moreira (2001) show another necessary condition for implementability: if θ and $\tilde{\theta}$ choose the same coverage level c, then their marginal utilities should coincide, i.e., $\partial_c v(c, \theta) = \partial_c v(c, \tilde{\theta})$ or $e(c, \theta) - \theta \sigma^2 (1 - c) = e(c, \tilde{\theta}) - \tilde{\theta} \sigma^2 (1 - c)$.

Moreover, this implementability condition implies a necessary optimality condition: the ratio between the marginal profit and the marginal informational rent weighted by the density are equalized across pooling types:

$$
\frac{\Pi_e(c, \theta)}{v_{\theta} e(c, \theta)} \overset{\text{f}}{=} \frac{\Pi_e(c, \tilde{\theta})}{v_{\theta} e(c, \tilde{\theta})} \overset{\text{f}}{=}
$$

(8)

16The word ‘virtual’ means profit discounted by the informational rent. The term ‘relaxed’ is related to the relaxed program which is the monopolistic insurance problem considering only the first order condition of the IC constraint.

17See Jullien (2000) for dealing with countervailing incentives in general.
where hat means that the function is calculated at $\hat{\theta}$.

In some cases these necessary conditions for implementability are also sufficient and we can characterize the optimal contract. This is exactly the case of assumption A2 with quadratic cost and uniform distribution of risk aversion. Let us characterize the optimal contract in such case.

First, we have that

$$\hat{r}(\theta) = \left(\frac{\sigma^2}{2} - \theta\right) (1 - (1 - c(\theta))^2).$$

If there is no overinsurance ($c \leq 1$), \hat{r} changes sign at most once, and then it is only necessary to check the IR constraint at the boundary values: 1 or 2.

- $\sigma^2 \leq 2$: $\hat{r}(\theta) \leq 0$ if and only if $c(\theta) \geq 0$. Therefore, since implementable coverages are non-increasing in θ, $\hat{r}(\theta) \leq 0$ if and only if $c(2) \geq 0$. Otherwise, $r(\cdot)$ is U-shaped with minimum at θ^* such that $c(\theta^*) = 0$. Using the first order condition of the relaxed program, we have that $1 - c(2) = \frac{4}{3\sigma^2}$. Thus, $c(2) < 0$ if and only if $\sigma^2 < 3/4$. The optimal contract is:

$$1 - c^2(\theta) = \frac{1}{-1 + 2\left(1 + \frac{1 + \sigma^2}{\theta^2}\right) - \frac{\sigma^2}{\theta^2}}$$

i.e., it is the relaxed solution associated to the hazard function R^2. Observe that c^2 decreases with θ and σ^2.

- $\sigma^2 \geq 4$: $\hat{r}(\theta) \geq 0$ if and only if $c(\theta) \geq 0$. Therefore, since implementable coverages are non-decreasing in θ, $\hat{r}(\theta) \geq 0$ if and only if $c(1) \geq 0$, which is always the case. The optimal contract is:

$$1 - c^1(\theta) = \begin{cases} \frac{1}{-1 + 2\left(1 + \frac{1 + \sigma^2}{\theta^2}\right) - \frac{\sigma^2}{\theta^2}}, & \text{if } 1 \leq \theta \leq \theta_0 \\ 1 - c, & \text{if } \theta_0 < \theta \leq 2 \end{cases}$$

where $\int_{\theta_0}^{\theta} \left[(1 - C_c(e(\bar{c}, \theta), \theta))c_c(\bar{c}, \theta) + \theta \sigma^2 (1 - \bar{c}) + R^1(\theta) \left(C_c(e(\bar{c}, \theta), \theta) c_c(\bar{c}, \theta) - \sigma^2 (1 - \bar{c}) \right) \right] f(\theta) d\theta = 0$, $\bar{c} = c^1(\theta_0)$ and c^1 is the relaxed solution associated to the hazard function R^1. This last equation is the “ironing principle” (see Guesnerie and Laffont (1984)). Also, c^1 non-decreases with θ and decreases with σ^2.

For $\sigma^2 \in [2, 4]$, Araujo and Moreira (2001) show that c is implementable if and only if c is non-decreasing on $[1, \sigma^2/2]$, non-increasing on $[\sigma^2/2, 2]$, and given θ and $\hat{\theta}$ pooling types (where c is non flat), then θ and $\hat{\theta}$ are symmetric with respect to $\sigma^2/2$. Therefore, the rent function $r(\cdot)$ is bell shaped and $r(1) = 0$ if and only if $c(1) \leq c(2)$. In this case, the optimal contract is described as follows.

- $\sigma^2 \in [2, 3]$

$$c^{SB}(\theta) = \begin{cases} c^u(\theta), & \text{if } 1 \leq \theta \leq \theta_0 \\ c^2(\theta), & \text{if } \theta_0 \leq \theta \leq 2 \end{cases}$$
where \(\theta_0 \) is such that \(c^u(1) = c^u(\theta_0) \) and, from (8), \(c^u \) is characterized by

\[
\frac{c - \theta \sigma^2 (1 - c) C_{ee}(e, \theta)}{C_{ee}(e, \theta) + \sigma^2 (1 - c) C_{ee}(e, \theta)} + R^2 \right) f = \left(\frac{c - \tilde{\theta} \sigma^2 (1 - c) C_{ee}(\tilde{e}, \tilde{\theta})}{C_{ee}(\tilde{e}, \tilde{\theta}) + \sigma^2 (1 - c) C_{ee}(\tilde{e}, \tilde{\theta})} + \tilde{R}^2 \right) \tilde{f}
\]

and \(\tilde{\theta} \) satisfies \(\partial v(c, \theta) = \partial v(c, \tilde{\theta}) \). For the case we are dealing

\[
1 - c^u(\theta) = \frac{1 + \left(\frac{\sigma^2}{\theta} - 1 \right)^2}{1 + \frac{\sigma^2}{\theta} + \left(\frac{\sigma^2}{\theta} - 1 \right)^2 (1 + \frac{\sigma^2}{\sigma^2 - \theta}) - \frac{1}{\sigma^2} (\theta - \frac{\sigma^2}{2})}.
\]

- \(\sigma^2 \in (3, 4] \):

\[c^{SB}(\theta) = c^1(\theta). \]

Appendix B: competitive equilibrium contract

The following analysis gives all the possible shapes of the equilibria in the competitive case.

- **separation**: \(\mu(\cdot|c(\theta)) \) is a singleton measure concentrated at \(\theta \). Then, the zero profit condition for the insurance company (1. of the definition of the PBE) under full revelation of \(\theta \) for the contract \((c(\theta), \beta(\theta)) \) is

\[\beta(\theta) = c(\theta)c(c(\theta), \theta). \]

The first order condition of 2. in the definition of the PBE is:

\[0 = \beta + v_c(c, \theta) \dot{c} = (c_c(c, \theta) \dot{c} + c_{\theta}(c, \theta))c + \theta \sigma^2 (1 - c) \dot{c}. \]

Using the previous expression of \(\beta \) we have the following ODE:

\[\dot{c} = \frac{cC_{ee}(c, \theta, \theta)}{\theta \sigma^2 (1 - c) C_{ee}(c, \theta, \theta) - c}. \]

- **continuous pooling**: there exists a non-degenerated interval \([\theta_1, \theta_2]\) where the equilibrium contract is constant, i.e., every insuree with \(\theta \in [\theta_1, \theta_2] \) chooses the same contract \((\overline{c}, \overline{\beta})\). Thus, condition 1. becomes

\[\overline{\beta}(F(\theta_2) - F(\theta_1)) = \int_{\theta_1}^{\theta_2} e(\overline{c}, \tilde{\theta}) f(\tilde{\theta}) d\tilde{\theta} \]

and 2. and 3. are easily satisfied in the given interval.

- **discrete pooling**: there are two intervals \([\theta_1, \theta_2]\) and \([\tilde{\theta}_1, \tilde{\theta}_2]\) such that for each \(\tilde{\theta} \in [\theta, \theta + d\theta] \), there is exactly one \(\tilde{\theta} \in [\tilde{\theta} - d\tilde{\theta}, \tilde{\theta}] \) choosing the same coverage \(c \). We have argued that a necessary condition of the IC constraint is \(v_c(c, \tilde{\theta}) = v_c(c, \tilde{\theta}) \). So, let \(\tilde{\theta} = \gamma(c, \theta) \) be the implicit of the last equation. In other words, given \(c \), there
are exactly two types that choose this contract: $\theta(\leq \sigma^2/2)$ and $\widehat{\theta}$. Therefore, the updating of θ given c is

$$\lambda = \lambda(c, \theta) = \Pr(\theta|c) = \lim_{d\theta \to 0} \frac{\Pr(\theta \leq \widehat{\theta} \leq \theta + d\theta)}{\Pr(\theta \leq \theta + d\theta) + \Pr(\theta - d\theta \leq \theta \leq \theta)}$$

where $\widehat{\theta} = \gamma(c(\theta), \theta))$ and $\widehat{\theta} - d\widehat{\theta} = \gamma(c(\theta + d\theta), \theta + d\theta)$ which implies

$$\lambda = \Pr(\theta|c) = \frac{f(\theta)}{f(\theta) + |\gamma_\theta(c, \theta)|f(\gamma(c, \theta))}.$$}

Then, the equilibrium is characterized by $\beta = c[\lambda e(c, \theta) + (1 - \lambda)e(c, \widehat{\theta})]$ and so c satisfies the following ordinary differential equation (ODE):

$$\dot{\beta} - (e(c, \theta) - \sigma^2\theta(1 - c))\dot{c} = 0.$$}

Consider the case of A2 with quadratic cost and uniform distribution on $[1, 2]$. The separating part of the equilibrium is characterized by the first order condition of (5), i.e., the following ODE - using (4):

$$\frac{\dot{c}}{1 - c} = \frac{2}{h(c, \theta)} \quad (9)$$

where $h(c, \theta) = \theta - \sigma^21-c$.

Observe that the curve implicitly defined by $h(c, \theta) = 0$ is precisely the pure moral hazard coverage c^{pm} and the region defined by $h(c, \theta) > (\leq) 0$ in the space $\theta \times c$ is given by (θ, c) below (above) the curve c^{pm}. As we did in the monopolistic model, we analyze several cases on the variance σ^2:

- low (high) variance, i.e., $\sigma^2 \leq 2 (\geq 4)$: the SCP holds and there is a separating equilibrium if and only if coverage is decreasing (increasing). Therefore, the solution of (9) is a separating equilibrium where its initial (final) condition at $\theta = 1 \ (2)$ is below (above) $c^{pm}(1) \ (c^{pm}(2))$.

- low intermediate variance ($2 < \sigma^2 < 3$): there is no full separation because the SCP does not hold. However, the necessary conditions for incentive compatibility of the monopolistic case are also valid here: c should be non-decreasing (non-increasing) in the region $v(c, \theta) > (\leq) 0$ and if θ and $\widehat{\theta}$ are pooling at the same contract c (where it is not flat), then $v(c, \theta) = v(c, \widehat{\theta})$ or $\widehat{\theta} = \sigma^2 - \theta$ and the Bayesian updating of θ given c is $\lambda = 1/2$. Thus, the first order condition of (5) (using (4)) gives the following ODE that characterizes the discrete pooling part:

$$\frac{\dot{c}}{1 - c} = \frac{2}{\sigma^2\theta h(c, \theta) + \theta - \sigma^2}.$$
Since the equilibrium must be bell-shaped, analyzing the sign of this ODE, \(c(\sigma^2/2) \) must be smaller than \(c_{\text{pm}}(\sigma^2/2) = 2/3 \). Conversely, if \(c \) is bell-shaped satisfying both ODEs in each case, then \(c \) is an equilibrium.\(^{19}\)

- high intermediate variance (3 ≤ \(\sigma^2 \) ≤ 4): the equilibrium coverage must be separating and then bell-shaped. That is, the equilibrium coverage must be increasing for low risk aversion and this separating part must be in the region below the curve \(c_{\text{pm}} \). However, in this region incentives are overpowered with respect to the pure moral hazard equilibrium. By (9), this separating part would be decreasing which would violate the incentive compatibility. Thus, only equilibria with much (continuous) pooling are possible.

- high variance (\(\sigma^2 > 4 \)): the ODE (9) is not Lipschitzian at the final condition. However, by continuity, the quasi-separable equilibrium can be defined as the limit of a sequence of equilibria with final conditions that converge to 1. Moreover, there is no discontinuity at \(\sigma^2 - 1 \) because the average coverage in the pool interval, \([\sigma^2 - 2, 2]\), is greater than in the separating interval, \([1, \sigma^2 - 1]\).

We assumed uniform distribution on the interval \([1, 2]\). However, we can deal with other distributions. Consider for instance the following family of power distributions:

\[
f_n(\theta) \approx (\bar{\theta} - \theta)^n
\]

where \(n \) is a non-negative real number and \(f_n \) is a density function with support on \([\underline{\theta}, \bar{\theta}]\). The interesting property of this family is that large \(n \) puts more weight on low risk averse types, which reinforces the negative relation between coverage and \textit{ex-post} riskiness.

Smooth pasting condition. It is the continuity of the insuree’s indirect utility function at \(\theta^*_1 = \sigma^2 - 1 \). There are two possible cases:

- separating to discrete pooling: let us compute the reimbursement for the separating and discrete pooling part at \(\theta^*_1 \), respectively:

\[
\beta^s(\theta^*_1) = (1 - c^s(\theta^*_1))c^s(\theta^*_1)\theta^*_1^2
\]

\[
\beta^p(\theta^*_1) = (1 - c^p(\theta^*_1))c^p(\theta^*_1) \left(\frac{1 + \theta^*_1^2}{2} \right),
\]

where the last value is the mean between the two pooling types. The smooth pasting condition is then

\[
\beta^s(\theta^*_1) + v(c^s(\theta^*_1), \theta^*_1) = \beta^p(\theta^*_1) + v(c^p(\theta^*_1), \theta^*_1).
\]

- separating to continuous pooling: let us compute the reimbursement for the continuous pooling part at \(\theta^*_1 \) (the separating part is the same):

\[
\beta^p(\theta^*_1) = (1 - c^p(\theta^*_1))c^p(\theta^*_1) \int_{\theta^*_1}^{1} \frac{\theta^2}{3 - \sigma^2} d\theta,
\]

\(^{19}\)A proof of this fact can be adapted from Araujo and Moreira (2001). Observe that it is not a straightforward result because we have to show that the necessary local second order conditions (monotonicity) and the equalization of the marginal utility of coverage across pooling types are sufficient conditions for incentive compatibility.
where the integral represents the expected value with the uniform distribution. Since $c^\beta(\theta^*_1) \simeq 1$, then $\beta^\beta(\theta^*_1) \simeq 0$ which implies that $c^\beta(\theta^*_1) = c^\beta(\theta^*_1)$.

Appendix C

We provide a sufficient condition for the monotonicity condition in the statement of Propositions 1(i) an 2.

Lemma. Assume that $A0$ holds and $\partial_{c\theta} \theta > 0$.

(i) If $C_{c\theta} > 0$ and $C_{\theta\theta} > 0$, then $\pi_\theta > 0$.

(ii) If $C_{c\theta} < 0$ and $\theta C_{c\theta} + C_{\theta\theta} < 0$, then $\pi_\theta < 0$.

Proof. (i) Taking the second equality of (6), we have that the left hand side increases with θ and the right hand side decreases with them. This immediately implies that the implicit solution of this equation, $e(c, \theta)$, is non-increasing on θ. Therefore, $\pi(c, \cdot)$ is a non-decreasing function.

(ii) The proof is analogous to (i).

References

