Perlin Noise Creating Procedural Solid Textures

Student: Alexandre Chapiro, Advisor: Luiz Velho

Topics

Topics

Introduction

Theory

Some examples

Software

More examples!

Solid textures.

Perlin Noise.

What can we do with all this?

Introduction

Topics

Introduction

Theory

Some examples

Software

More examples!

→ What is Perlin Noise?

 Perlin Noise is a method used to develop several interesting procedural textures:

Clouds / Water / Fire / some materials (marble, wood) ...

... and much more!

Theory

Topics

Introduction

Theory

Some examples

Software

More examples!

→ What is Perlin Noise?

- Perlin Noise is a mapping from \mathbb{R} n to \mathbb{R} .
- First, create a grid of points with integer coordinates,
- For each point, find it's closest neighbours on this grid,
- Use a hash table to assign each of the grid points a gradient vector, which defines a linear function,
- Weight these functions using an S shaped polynomial (currently 6x⁵ – 15x⁴ + 10x³),
- Sum them all, and the result is Perlin Noise.

Theory

Topics

Introduction

Theory

Some examples

Software

More examples!

- → What does it look like?
- Perlin Noise alone isn't very useful.
- We can, however, combine it with several other functions!
- For instance, ∑(1/f)*(noise(f*p))
 is called turbulence, and can
 be used to generate lots of
 interesting effects.

1 This

Some examples

Topics

Introduction

Theory

Some examples

Software

More examples!

→ Some examples from Perlin's "Making Noise" talk (and my attempts at replicating them):

→Original Image

→My example

A water ball with ripples

Topics

Introduction

Theory

Some examples

Software

More examples!

→ How was it obtained?

Only bump mapping, no color variation;

 The normal vector at each point 'p' is obtained through:

- 'n' is the original normal;
- Parameter is chosen big enough for a pleasing effect. (more on this later)

Some examples

Topics

Introduction

Theory

Some examples

Software

More examples!

→ Another example from Perlin's "Making Noise" talk:

→Original Image

→My example

A green-ish planet with clouds

Topics

Introduction

Theory

Some examples

Software

More examples!

→ How was it obtained?

- Outside of the ball brightened, to make it look like a clearer atmosphere arround a darker landmass;
- Planet's color is static, with clouds added to the original color;
- Cloud's color obtained with:
 c += turbulence (8, p);
- 8 is the amount of octaves;

Some examples

Topics

Introduction

Theory

Some examples

Software

More examples!

→ Yet another example from Perlin's "Making Noise" talk:

→Original Image

→My example

Flame ball

Topics

Introduction

Theory

Some examples

Software

More examples!

→ How was it obtained?

 Initial colour set as bright orange (lots of R and G);

 The color is then obtained by keeping R the same and varying G:

```
G -= 4* [turbulence (15, parameter*p, WITH_ABSOLUTE_VALUE)]^2;
```

 15 octaves, turbulence with absolute value, ^2 for thinner lines.

Some examples

Topics

Introduction

Theory

Some examples

Software

More examples!

→ One last example from Perlin's "Making Noise" talk:

→Original Image

→My example

Marble

Topics

Introduction

Theory

Some examples

Software

More examples!

- → How was it obtained?
- Initial colour set as "hay", then multiplied by 'f';
- K = turbulence(15, p, WITH_ABSOLUTE_VALUE);
 C = 'hay'* sin(4*PI*(p.x + 2*k^2);
- 15 octaves, turbulence with absolute value, ^2 for thinner lines, 4*PI sets the ammount of oscillation of the 'sin' function (black x colored lines).

The program.

Topics

Introduction

Theory

Some examples

Software

More examples!

→I've created an interactive program that allows the user to create his own textures using Perlin Noise / Turbulence.

Normal editing.

Topics

Introduction

Theory

Some examples

Software

More examples!

→The first tab allows the user to create bump maps using different kinds of Turbulence, stripes, and several possibilities.

Texture creation.

Topics

Introduction

Theory

Some examples

Software

More examples!

→Users can create their own textures. Some examples:

Defines Regions.

Topics

Introduction

Theory

Some examples

Software

More examples!

→The program also allows the user to create a division on the surface using turbulence or stripes...

The final result!

Topics

Introduction

Theory

Some examples

Software

More examples!

→Finally, you can create an image that contains the respective textures in the created regions, on a sphere with the bump map you used before!

More results!

01/07/10

Few more results!

References:

Papers:

- 1) Ken Perlin, "An Image Synthesizer", SIGGRAPH Volume 19, number 3, July 1985.
- 2) Ken Perlin, "Improving Noise", Proceedings of ACM SIGGRAPH 2002.
- 3) A. Lagae et al., "State of the Art in Procedural Noise Functions", EUROGRAPHICS, STAR State of The Art Report, 2010.

Talks:

 Ken Perlin, "Making Noise", http://www.noisemachine.com/talk1

Thank You!