

HDR Video goes Mobile

Alexandre Chapiro and Tássio Knop

Digital Photography

 Photographers use "dynamic range" for the luminance range of a scene being photographed, or the limits of luminance range that a given digital camera can capture

Image: http://www.cambridgeincolour.com/tutorials/dynamic-range.htm

Digital Photography

- The dynamic range of sensors used in digital photography is many times less than that of the human eye and generally not as wide as that of chemical photographic media.
 - Algorithmic solutions

High Dynamic Range - HDR

- Technique that allows greater dynamic range than current standard photography methods.
- Can be done by merging of multiple "low dynamic range" (standard) photographs.

Combined Exposure for HDR

HDR from several Exposures

- Several images are taken, with different exposures.
- Each pixel has a "good" value on at least one image.

HDR from several Exposures

Camera response curve is built, based on the known Exposure Time and "good" Pixel Values.

ISO stays fixed. (non-linear response with ISO variation).

Tone Mapping

- Normal display methods (monitors, projectors, printers ...) have Low Dynamic Range, unable to reproduce HDR.
- Need "Tone Mapping" algorithms to reduce radiance contrast (and try to preserve the original scene).

Tone Mapping

Original captures

Displayable result

Tone Mapping

HDR image

HDR Video

- Object movement.
- Camera movement.
- Needs a good framerate.
- Illumination varies.

VISGRAF

Luiz Velho's Method

Cumulative histograms.

Camera response.

Input

Brightest pixel correlation.

Obtains a radiance map.

Step 1

 Compute Cumulative Histograms

Merge
 Cumulative
 Histograms

Photometric Calibration

Reconstruct
 Radiance Map
 (pseudocolor)

Luiz Velho's Method

- Binarize image in order to compensate camera movement.
- Builds HDR image from radiance map.

The result is a video with the same framerate as the LDR captures.

Step 2

 Find Best Histogram Cut

Histogram-Guided Registration

 Threshold Images Based on Cut

 Perform Multiresolution Alignment

Step 3

 Transform Images to Current Coordinate System

Radiance Reconstruction with Ghost Elimination

- Compute Pixel Variances
- Blend Radiances

Tone Mapped

Output

Mobile HDR Video

- FrankenCamera and FCam API [1]
- A fully programmable camera.
 Exposure, ISO, Flash, etc. can be controlled

- Programmable in C++ with QT.
- Also works on the Nokia N900 smartphone.
 (That has a surprisingly good camera)

HDR Video goes Mobile

 Our method automatically adjusts exposure time and gain for best results.

 Motion estimation is based on histograms.

 Resulting video has same framerate as LDR captures.

Technical challenges

- Goals:
 - Good framerate
 - High quality videos of arbitrary duration
- Limitations:
 - Mobile devices still have limited processing power and memory

- 600 MHz ARM processor
- 256 MB RAM

Technical challenges

- Solutions:
 - Capture short videos
 - Post-process the captured frames
- Other possibilities:
 - Hardware video encoding
 - Faster, bigger memory

- 600 MHz ARM processor
- 256 MB RAM

Results

Please see the project's website, at: http://w3.impa.br/~achapiro/hdr, And the results video at: http://w3.impa.br/~achapiro/hdr.mov

References

- [1] A. Adams, E.-V. Talvala, S. H. Park, D. E. Jacobs, B. Ajdin, N. Gelfand, J. Dolson, D. Vaquero, J. Baek, M. Tico, H. P. A. Lensch, W. Matusik, K. Pulli, M. Horowitz, and M. Levoy. The frankencamera: an experimental platform for computational photography. ACM Trans. Graph., 29(4):1–12, 2010.
- [2] P. E. Debevec and J. Malik. Recovering high dynamic range radiance maps from photographs. In SIĞGRÁPH '97: Proceedings of the 24th annual conference on Computer graphics and interactive techniques, pages 369–378, New York, NY, USA, 1997. ACM Press/Addison-Wesley Publishing Co.
 - [3] F. Drago, K. Myszkowski, T. Annen, and N. Chiba. Adaptive logarithmic mapping for displaying high contrast scenes. Computer Graphics Forum, 22:419–426, 2003. 4
- [4] M. Grossberg and S. Nayar. Determining the Camera Response from Images: What is Knowable? IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(11):1455-1467, Nov 2003. [5] S. B. Kang, M. Uyttendaele, S. Winder, and R. Szeliski. High dynamic range video. In SIGGRAPH '03: ACM SIGGRAPH 2003 Papers, pages 319–325, New York, NY, USA, 2003. ACM. 1 [6] M. Levoy. Experimental platforms for computational photography. IEEE Computer Graphics and Applications, 30:81–87, 2010.
- [7] P.-Y. Lu, T.-H. Huang, M.-S. Wu, Y.-T. Cheng, and Y.-Y. Chuang. High dynamic range image reconstruction from hand-held cameras. Computer Vision and Pattern Recognition, IEEE Computer Society Conference on, 0:509–516, 2009. 2
- [8] T.-H. Min, R.-H. Park, and S. Chang. Histogram based ghost removal in high dynamic range images. In ICME'09: Proceedings of the 2009 IEEE international conference on Multimedia and Expo, pages 530–533, Piscataway, NJ, USA, 2009. IEEE Press.
 - [9] T. Mitsunaga and S. Navar, Radiometric Self Calibration, In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), volume 1, pages 374–380, Jun 1999, 1, 2
 - [10] K. Myszkowski. High Dynamic Range Video. Morgan and Claypool Publishers, 2008.
 - [11] M. Robertson, S. Borman, and R. Stevenson. Dynamic range improvement through multiple exposures. In Proceedings of the IEEE International Conference on Image Processing, volume 3, pages 159–163, Kobe, Japan, Oct. 1999. IEEE.
 - [12] A. M. Sa. High Dynamic Range Image Reconstruction. Morgan & Claypool Publishers, 2008.
 - [13] L. Velho. Histogram-based hdr video. In SIGGRAPH '07: ACM SIGGRAPH 2007 posters, page 62, New York, NY, USA, 2007. ACM.
 - [14] G. Ward. Fast, robust image registration for compositing high dynamic range photographs from handheld exposures. JOURNAL OF GRAPHICS TOOLS, 8:17–30, 2003. 2