The Zorn’s Algebra $\mathcal{Z}(R)$ is the matrix representation of the split Cayley-Dickson algebra, where R is a ring. This algebra has a multiplicative function called determinant with properties similar to the usual one. The set of elements in $\mathcal{Z}(R)$ with determinant 1 is a Moufang loop that we will denote by Γ. In our main result we prove that if R is a Dedekind algebraic number domain that contains an infinite order unit, then all finite index normal subloop of Γ is a congruence subloops. In addition, if $R = \mathbb{Z}$, then we present subloops of finite index in Γ that are not congruence subloops.