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ABSTRACT. In this paper, we study the McDonald-Siegel (MS) model for real op-
tions under the assumption that the spanning asset undergoes a stochastic volatil-
ity dynamics that reverts to a historical value according to an Ornstein-Uhlenbeck
process driven by a second source of uncertainty. In this case, the market is not
complete, and valuation, even for a perfectly correlated asset, is not as straightfor-
ward as in the MS model. Nevertheless, it is possible to derive a pricing equation by
risk-neutral arguments that depends on the so-called market risk premium. Under
the further assumption that the driving volatility process is fast-mean reverting, we
derive an asymptotic approximation for the value of a real-option. In such case, the
model becomes very parsimonious and can be calibrated to real data.

1. INTRODUCTION

The use of mathematical tools from quantitative finance to evaluate corporate
investments under uncertainty leads to a number of challenging mathematical prob-
lems that are of direct practical interest. In this article we pose and analyze one of
such problems, namely a free-boundary partial differential equation associated to the
option to delay an investment decision and to undertake it in the future [Mye77].
Such real option to defer investment has a value that can be, in turn, modeled and
quantified by option theory in the context of derivatives of American type. Such
option to defer is associated, for example, to problems where management holds a
lease on valuable land or resources and it can wait until output prices justify invest-
ment. See [MS86, PSS88, Tou79, Tit85, IR92]. For the real option approach we refer
to [MS86, Dix89, TM87, Pin91].

In this article we focus on the classical McDonald-Siegel approach under the condi-
tion of stochastic volatility and fast mean reversion of the spanning asset. The study
of stochastic volatility models has been the subject of intense research throughout the
last decades. See [HW87, Sco87, Wig87, SS91, HPS92, AN93, AM94, RB94, Hes93,
Dua95, RPT00, RT96, MCC98, Tou99, ZA98, FPS00] and references therein.

The importance of stochastic volatility models can be explained by the fact that the
classical Black-Scholes model suffers from a number of draw-backs: The log-normality
of the underlying asset prices is not verified by statistical tests and the corresponding
option prices are subject to the so-called smile-effect [Dup94]. On the other hand, in
the case of stochastic volatility models, one can find heavier tails than those in the
log-normal model of underlying prices, the distribution could be asymmetric and the
smile curve appears naturally [RT96]. However, being more realistic comes with a
price. Indeed, stochastic volatility models are much harder to analyze and could be
impractical due to the appearance of the so-called market price of volatility risk.
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One effective approach for overcoming such difficulties and performing a practical
analysis is to exploit the different scales involved, thus drawing from asymptotic tech-
niques. This program has been implemented in a ground breaking way by [FPS00].
See also [FPS01b, FPS01a, FPSS03a, CFPS04, SZ07a].

We present the asymptotic analysis of the real option to defer investment for the
McDonald-Siegel model under a fast mean reverting regime of stochastic volatility.
We obtain following [FPS00] the first order correction of the price and exemplify how
this price could be used by means of numerical simulations. The latter indicate that
the presence of stochastic volatility tends to add value to the option to defer and to
increase the optimal time to start investment.

The plan for this article is the following: In Section 2 we briefly review the key
aspects of the McDonald-Siegel model. In Section 3 we present the asymptotic ex-
pansion of the stochastic volatility model under fast mean reversion. In Section 5 we
present our numerical results, draw some conclusions and describe some directions
for further research.

2. THE McDONALD-SIEGEL MODEL

In the present section we briefly review the McDonald-Siegel Model[MS86] for in-
vestments under uncertainty.

Suppose that a corporation is considering whether to launch a new project and let
us assume that the estimated value of such project at a given time ¢ is V;. Suppose,
furthermore that V; evolves according to the stochastic differential equation

dV, = aVidt + o VidWy

where here, differently from the traditional MS model, we take o; to be a stochastic
process driven by a (hidden) stochastic process Y;. The process Y;, on the other hand,
evolves according to a dynamics of the form dY; = a(m — Y;)dt + ﬁdz , Where 7, is
a Brownian possibly correlated to W;.

Assume that the fixed cost of launching such project are known and given by I.
Two fundamental questions appear:

e How much is such opportunity worth?
e What is the optimal time to launch such project?

From now on, we consider one further complication, namely the hypothesis that the
investment on the project has to be taken within a finite time T. We also assume that
the value V; is perfectly spanned by a liquid security X, that is perfectly correlated
to V;. In a no arbitrage context the value of the project then takes the form

(1) P(,VsT) = sup EF (V= 1)"|
t<r<T

where 7 is a stopping time adapted to the Brownian’s filtration and () is an equivalent
martingale measure chosen by the market and associated to the fact that we have a
second source of uncertainty in the stochastic volatility.

A minute’s thought reveals that the price P(t,V;;T) can be cast in terms of an
American option with maturity 7 and a payoff (X, — I)*. In other words, an Amer-
ican call option. Due to the fact that the process X; may have a drift under the
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measure () distinct from the riskless interest rate r prevalent in the market the cor-
responding American option’s optimal exercise time 7 is not necessarily 7. We are
thus led to analyzing the problem of evaluating American call options on a dividend
paying security under stochastic volatility. This problem, is known to have no ex-
plicit solutions in general. In order to analyze such problem we introduce the amply
justified practical assumption of fast mean reversion [FPS00]. We remark in passing,
that without such assumption one would have to resort to numerical techniques and
handle the problem of determing the market price of volatility risk.

3. STOCHASTIC VOLATILITY MODELS UNDER FAST MEAN REVERSION

In this section we focus on the case of Furopean options and postpone the discussion
of American options to Section 4. We recall the classical Black-Scholes (B-S) market
model so as to fix the notation. We denote by ( a riskless asset (bond or insured
bank deposit) and by X a risky asset. In the classical B-S model the assets undergo
the following dynamics

(2) dCt = Tctdt dXt = ,UXtdt + O'Xtth

where W; is the standard Brownian Motion. Let P(t¢,x) denote the price of an option
at time t and spot value . Standard replication and non-arbitrage arguments lead
to the classical Black-Scholes equation
orP 1 o*P oP

3 — 4 =o'’ —— —0)z— —rP =0 P(Tg,)=h
(3) gt T30 g e (Tk.)
where h is the payoff at time Tg and ¢ is the continuous dividend rate.

As mentioned in Section 1, motivated by the need of explaining a number of empir-
ical observations many authors consider stochastic volatility models. More precisely,
following with [FPS00] and references therein, we consider the dynamics

where Z, is a linear combination of two independent Brownian motions (W;) and
(Zy). As in [FPSS03b], we assume that f is bounded from above and away from
zero. In addition to that we also assume f to be at least twice differentiable. In
this model, the risky asset’s volatility is controlled by a stochastic process y = Y,
which could be thought of as a hidden process. Such process Y;, in turn, undergoes
an Ornstein-Uhlenbeck dynamics. This choice is motivated by the empirical remark
that the volatility tends to return to a historical level after some time. The return
rate to such mean is denoted by a.

Let P = P(t,z,y) be the price of an European option at time ¢ given that the
current stock price is x and its driving state is y. Once again, using a non-arbitrage
argument it is well-known [Hes93] that P(¢,x,y) satisfies

oP 1. . ,0°P 2P 1 ,0°P oP
(4) T §f(y) oz T pBxf(y) 8x8y+§6 Iy + (r — 5)$% —rP+
oP
(a(m —y) — BA(t,7,y)) -~ =0

dy
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where

w—r

W) +(tz,y)V1—p

Alt,z,y)=p

with final condition P(Tg, -, -) = h(:). Here, the function v can be interpreted as
the market value of risk associated to the second source of randomness that drives
the volatility (Z;). To avoid technical difficulties, we assume ~ to be bounded and
continuous. Furthermore, as in [FPS00], we shall assume that v depends only on y.
Equation (4) can be interpreted, as done in [FPS00], considering the operator

01,y 07 0
E—E—I—ﬁf(y) x @ﬁL(r—é)x%—T-—k
92
Bl W)5 5,
1 _, 0 0 0
+§ﬁ a—y2+0z(m—y)8—y—ﬁA6—y

The first line of the RHS for £ consists of the standard Black-Scholes operator with
(stochastic) volatility f(y). The second one consists of a correlation term. The third
one is the generator for the O-U process added to a premium term associated to the
market price of volatility risk.

4. MAIN RESULTS

We introduce the parameter € = 1/a where and consider the asymptotic behavior
of the model when ¢ — 0. For the case of an American call option on a dividend
paying asset, the Black-Scholes equation becomes the free-boundary value problem:
given by

LP =0,
Pe(t,x,y) =(x—1

~—
+

PE(T,J},y) = ([E—])+

where L€ is the operator on the RHS of Equation 4 with v = 1/e. We write

€

P =po + €%p; + eps xo, = xo + e'2ry + exsy



REAL OPTIONS UNDER FAST MEAN REVERSION STOCHASTIC VOLATILITY 5

and break the operator £ into

0? 0
_~2 7 _ .
'CO =V ayQ + (m y) ay )
0/2 02
Ly =vp Qxf(y)a 5~ Vs(t,x,y)a ,
0 1 2 o 0 0
L=+ VW) g +r <x8x > e

%= 3?/(2a), and s(t,z,y) := (8/a)A(t,x,y). After grouping the terms of equal
order, proceeding with the straightforward analysis carried out in [FPS00] of the
terms in e ' and € /2, the relevant problems turn out to be

LoPy=0,2 < xo(t)

Po(t,x) = (x — Iy, x > x0(t)
By(t, wo(t)) = (wo(t) — 1)+

0. Po(t,zo(t)) =1

zo(T) = 1.

and

LoP = —L1Py,x < x9(t)

Pi(t,x) = 0,2 > x(t)

Py(t,zo(t)) =0

21 ()02 Py (t, 20(t)) + 0. Pi(t, zo(t)) = 0
x(T) = 0.

We computed the numerical solutions for the problems above, with I = 50, r =
0=0.0506=02T=2V; =0.25 V5, =0. The data was chosen only for illustrative
purposes.

The price of the American Call with dividends is given Figure 1. The price of the
correction to allow for the stochastic volatility effects is shown in Figure 2.

5. DISCcUSSION

We have performed the analysis of an option to defer investment under a finite
horizon assuming the presence of a spanning asset that satisfies a stochastic volatility
model. The results presented in Figures 1 and 2 are typical of the results we obtained.
They indicate a the significance of perturbation of the price, which seems to be
always positive within the accuracy of the numerical software. Thus, the addition of
the correction to the unperturbed solution increases the corresponding price of the
option to defer and seems to increase also the optimal investment time. The intuitive
reason for the increase in the solution is the fact that the extra source of uncertainty
connected to the volatility seems to aggregate value to the firm’s option to defer
investment.
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We have not attacked in this note the description of the free boundary that deter-
mines the exercise frontier. However, we expect that in this case due to the need of
a multiscale analysis we would have to use the techniques developed in [SZ07b].
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F1GURE 1. Black-Scholes price for the American Call with dividends
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F1GURE 2. Stochastic volatility correction in the fast-mean reversion regime.



