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Abstract

In this work we are concerned with valuing the option to invest in a project when the project

value and the investment value are both mean-reverting. Previous works which dealt with

stochastic project and investment value concentrate on geometric Brownian motions for

driving the values. However, when the project involved is linked to commodities, mean-

reverting assumptions are more meaningful. Here, we introduce a model and prove that the

optimal exercise strategy is not a function of ratio of project value to investment V/I – as

it is in the Brownian case. We further apply the Fourier space time-stepping algorithm of

Jaimungal and Surkov (2009) to numerically investigate the option to invest. The optimal

exercise policies are found to be approximately linear in V/I; however, the intercept is not

zero.
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1 Introduction

Quantitative methods to analyze the option to invest in a project enjoy a long and dis-

tinguished history. The classical work of McDonald and Siegel (1986) (see also Dixit and

Pindyck (1994)) investigates the problem from the point of view of derivative pricing and

assigns the value of the option to invest as

value = e−rTE [(VT − IT )+] . (1.1)

Here, the expected value is taken under an appropriate risk-adjusted measure. Further-

more, VT and IT represent the project’s value and the amount to be invested, respectively,

at time T .

If the project can be started at anytime, then (1.1) is modified to its American coun-

terpart. In this case, the maturity date T is replaced by a stopping time τ (0 ≤ τ ≤ T )

and the investor chooses the stopping time to maximize the option’s value, i.e.,

value = sup
τ∈T

e−rτE [(Vτ − Iτ )+] , (1.2)

where T denotes the family of all stopping times in [0, T ]. As such, the problem becomes

a free boundary problem in which the optimal strategy is computed simultaneously with

the option’s value.

Traditionally, the project value is assumed to be a geometric Brownian motion (GBM)

and the investment amount is constant or deterministic, as in the pioneering work of

Tourinho (1979). Stochastic investment amounts have also been investigated previously:

the case of the perpetual option and GBM investment is treated in McDonald and Siegel

(1986) (see also Berk, Green, and Naik (1999)). More recently, Elliott, Miao, and Yu

(2007) have investigated the case of regime switching investment costs for the option in
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perpetuity. Perpetuities have also been investigated with a mean-revearting CIR project

value (but constant investment) by Ewald and Wang (2007). It is interesting to note that

the uncertain investment problems are similar to those found in exchange options, as in

Margrabe (1978), and in uncertain payoffs, as in Fischer (1978).

Much of the traditional works which account for stochastic investment amounts – e.g.

McDonald and Siegel (1986) and Blenman and Clark (2005) – assume that the investment

amount is a GBM. This may be a good model for the project value in certain circumstances;

however, as already noticed in McDonald and Siegel (1986), investment costs are typically

linked to certain commodity prices, and thus are expected to revert to an equilibrium

level. Furthermore, in situations where the cash-flows of the project are directly linked

to commodities, the project value is also expected to fluctuate about an equilibrium level.

One case where this connection is abundantly clear is the option to the invest in an oil

field. Like most commodities, oil prices tend to mean-revert, and as a direct result the

value of investment in an oil field is also mean-reverting. Consequently, it would not be

appropriate to use GBM models for such projects. Of course, several authors have noticed

this and mean-reverting processes have been considered, such as Metcalf and Hasset (1995)

and Sarkar (2003). However, combining mean-reverting project value with mean-reverting

investment amount has not been considered up to now. In the next section we provide a

modeling framework which naturally extends the mean-reverting project value to account

for mean-reverting investment.

2 A Mean-Reverting Value and Investment Model

The difficulty with allowing both project value Vt and investment amount It to be stochastic

lies in the fact that the problem becomes two-dimensional and the optimal policy will, in

general, depend on both Vt and It. However, since the payoff (VT − IT )+ of the option to
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invest is homogeneous in (VT , IT ), when both the project value and investment amount are

GBMs, it turns out the optimal policy depends only on the ratio Vt/It and the option’s value

inherits the payoff’s homogeneity. This was observed quite early in McDonald and Siegel

(1986) and it seems that this trigger ratio policy has become a paradigm in Real Options

pricing. See Dixit and Pindyck (1994) for a review of these triggers for perpetual options

with both GBM and mean-reverting project values but constant investment amount. We

will see that this very appealing property is not inherited by mean-reverting processes.

To this end, our model first assumes that the project value satisfies the SDE:

Vt = exp{θ +Xt − δt}, (2.1a)

dXt = −αXt− dt+ σX dW
X
t , (2.1b)

Here, WX
t is a standard Brownian motion and δ is a dividend yield representing the

effect decay in value of the project due to waiting. In this manner, the project value

is a mean-reverting diffusion process which reverts to the equilibrium value exp{θ − δt}.

Similar models have been proposed in the literature for commodity prices as in Cartea and

Figueroa (2005) and more generally in Jaimungal and Surkov (2009).

Now, we model the investment amount as another correlated mean-reverting processes.

Specifically,

It = exp{φ+ Yt}, (2.2a)

dYt = −βYt dt+ σY dW
Y
t . (2.2b)

Here, W Y
t is a standard Brownian motion correlated to WX

t with correlation ρ. Notice,

that the investment It available for the project has an equilibrium level of exp{φ}.

To illustrate the flexibility of the model, in Figure 2.1 two sample paths for the value
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and investment are presented. The sample paths were both generated from the the same

uncorrelated Brownian sample paths to highlight the effect of the correlation. The volatility

of the project was assumed to be 80% while the investment processes was assumed to have a

volatility of 50%. Panel (a) contains no correlation in the investment amount whereas panel

(b) illustrates the behavior when the investment and project value are perfectly correlated.

Notice that, as expected, the positive correlation case has a much lower variability in the

ratio of value to investment.

3 The European Option to Invest

We now investigate the option to invest under the modeling framework (2.1)-(2.2). The

European option to invest has value equal to the discounted expectation in (1.1). In the

Appendix we prove the following result

Theorem 3.1 European Option Price. The value of the European option to invest in

the project at a fixed date T under the modeling assumptions (2.1)-(2.2) is

value = E[VT ]Φ (d+)− E[IT ]Φ (d−) . (3.1)

Here, Φ(·) denotes the normal cumulative cdf, the effective total variance

σ̃2 = σ2
X

1− e−2αT

2α
− 2ρσXσY

1− e−(α+β)T

α + β
+ σ2

Y

1− e−2βT

2β
, (3.2)

and

d± =
ln (E[VT ]/E[IT ])± 1

2
σ̃2

σ̃
, (3.3)
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while the expectations are given by

E[VT ] = exp

{
θ − δT + e−αT X0 +

σ2
X

4α

(
1− e−2αT

)}
, (3.4)

E[IT ] = exp

{
φ+ e−βT Y0 +

σ2
Y

4β

(
1− e−2βT

)}
. (3.5)

In Figure 3.2, the value of the European option to invest in the project is shown

together with the payoff function for two different mean-reversion rates of investment.

Notice that, unlike in the purely GBM case, it is optimal to invest immediately if the

project value is large enough, or the investment cost is small enough. Another interesting

observation is the fact that the trigger curve itself is clearly not linear and does not go

through the point V = 0, I = 0. This indicates that, even in the European case, the

optimal strategy for investing is not provided by monitoring when the ratio V/I rises

above a critical trigger. Instead, both processes must be monitored simultaneously. It is

precisely the mean-reverting nature of both processes which causes such interesting results.

We will see that similar features flow through to the Bermudan option case.

To further assist in understanding the modeling implications, Figure 3.3 explores how

the trigger curve is affected by the various model parameters.

4 The Early Investment Option

Companies generally have the ability to invest early in a project, consequently, the value

of the option to invest in a project is truly of American type as in (1.2). Analytical

solutions for GBM and mean-reverting project value (with constant investment), with and

without regime switching, are restricted to the perpetual option. For finite time horizons,

no analytical solution are known, not even for the one dimensional case with GBM project

value, therefore we do not attempt to find analytic solutions. Instead we will develop an
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efficient numerical scheme and investigate the consequences of our model on the trigger

curves.

Rather than focusing on tree approximations, finite difference schemes or invoking least

squares Monte Carlo (Longstaff and Schwartz (2001)), we make use of the mean-reverting

Fourier space time-stepping algorithm of Jaimungal and Surkov (2009). More details are

to follow.

The Bermudan option to invest, where the project can only be invested in at the discrete

times {t0, t1, . . . , tn} (e.g. quarterly, monthly, weekly or daily), can priced recursively on

the exercise dates as follows:
ptn(Vtn , Itn) = (Vtn − Itn)+

ptm(Vtm , Itm) = max
{
e−r∆tm p

(m)
tm (Vtm , Itm) ; (Vtm − Itm)+

}
,

p
(m)
t = E

[
ptm+1(Vtm+1 , Itm+1) |Ft

]
,

(4.1)

for m = {1, 2, . . . , n−1}. Notice that on the exercise date tm, the discounted process p
(m)
t ,

i.e. e−r∆tmp
(m)
tm , is the holding (or continuation) value of the option to invest on that date.

Without loss of generality, the option value can be written in terms of the log processes

Xt and Yt, in which case we will write p̂
(m)
t (Xt, Yt) = p

(m)
t (eθ+Xt , eφ+Yt−δt). Jaimungal and

Surkov (2009) show that this continuation price can be computed via Fourier transforms,

resulting in

p̂(m)(t,X, Y ) = F−1
[
F
[
p̃tm+1(X, Y )

]
(ω1, ω2) eΨ((tm+1−t),ω1,ω2)

]
. (4.2)

Here, F [.] and F−1[.] represent Fourier and inverse Fourier transforms respectively,

p̃tm+1(X, Y ) = p̂tm+1

(
Xe−α(tm−tm+1) , Y e−β(tm−tm+1)

)
, (4.3)
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Ψ is related to the characteristic function of the generating process

Ψ(s, ω1, ω2) =− 1

2
σ2
X

e2αs − 1

2α
ω2

1 − ρσXσY
e(α+β)s − 1

α + β
ω1ω2 − 1

2
σ2
Y

e2βs − 1

2β
ω2

2 . (4.4)

By comparison with the intrinsic value, the optimal strategy can be computed numer-

ically through two fast Fourier transforms which approximately evaluate the Fourier and

inverse transforms. This procedure is far more efficient than a tree or finite-difference

scheme as it requires O(N logN) computations per exercise date, while finite difference

schemes will require O(MN) where M is the number of steps required between exercise

dates. For more details see Jaimungal and Surkov (2009).

In Figure 4.4, we plot the sequence of trigger curves for a ten year option to invest

assuming investment can be made only once a year. As maturity approaches, the trigger

curves move toward the exercise trigger of V = I, however, due to the mean-reversion point

lying well within the exercise trigger region, the early trigger curves lie significantly above

the line V ∗ = I. Furthermore, the trigger curves are not described by a line of the form

V ∗ = b I, instead, close to the equilibrium point they appear as if they can approximated

by V ∗ = a + b I. As one moves away from the equilibrium, in the direction of smaller

values, the non-linearities become apparent. For large values however, the non-linearities

are harder to spot visually, but they do in fact persist. The linear approximation appears

to only be valid near the This is contradistinction to the case of GBM drives where the

trigger curves will be described by V ∗ = b I.

In Figure 4.5, we plot the trigger surface for a ten year option to invest assuming

investment can occur daily. The solid blue line indicates the mean-reversion level, while

the black random path is a sample of the process. Interestingly, when viewed as in panel

(a), the sample paths appear to move mostly in a plane almost perpendicular to the trigger

curve. When the sample path crosses the surface, investment in the project should occur.
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From the panel (a) viewpoint it is clear that investment should have occurred near year 2,

while from the panel (b) viewpoint, this threshold crossing is not so evident. This suggests

that using the V/I versus V perspective is advantageous.

5 A Co-integrated model

Since the seminal works of C. Granger and R. Engle, the concept of co-integration became

crucial for the econometric study of financial time series (Engle and Granger 1987). In the

analysis of investment decisions, it is natural to expect that project values and investment

costs have co-integrated factors. Thus, it is natural to seek pairs of processes that co-

integrate and also lead to a trigger curve.

The results presented above show that, even when the processes for the project value

and the investment have the same mean-reversion, and then the ratio is also mean-reverting,

we cannot characterize the investment exercise curve using a trigger curve.

In what follows we construct a class of mean-reverting process pairs (V, I) for which

the ratio V/I is also a mean-reverting by considering co-integrated models.

We replace (2.2) by

It = exp{φ+ Yt}, (5.1a)

dYt = −((α− β)Xt− + βYt) dt+ σY dW
Y
t . (5.1b)

In this case, it is a simple matter to check that the modeling assumption (2.1)-(5.1) implies

that the ratio Vt/It of the project’s value and the amount invested is also a mean-reverting

processes and the dynamics of this ratio depends only on the ratio itself. Specifically,

notice that (Vt/It) = exp{(θ−φ)+(Xt−Yt)}, and that the difference process Zt = Xt−Yt
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satisfies the SDE

dZt = −β Zt dt+ σX dW
X
t − σY dW Y

t . (5.2)

Consequently, the ratio can be modeled directly as a mean-reverting process with rate β,

effective instantaneous variance of σ2 := σ2
X + σ2

Y − 2ρσXσY .

The value for the European option to invest is still given by (3.1) together with (3.2)

and (3.3). However, the expectations are now given by

E[VT ] = exp

{
θ + e−αT X0 +

σ2
X

4α

(
1− e−2αT

)}
, (5.3)

E[IT ] = exp
{
φ+ e−βT Y0 +

(
e−αT − e−βT

)
X0

+
1

2
σ2
X

[
1− e−2αT

2α
+

1− e−2βT

2β
− 2

1− e−(α+β)T

α + β

]
+1

2
σ2
Y

[
1− e−2βT

2β

]
+ρσXσY

[
1− e−(α+β)T

α + β
− 1− e−2βT

2β

]}
.

(5.4)

The value of the early investment option can be computed as described in section 4, but

taking into account that the characteristic function for pair (Xt, Yt) is now given by

Ψ(s, ω1, ω2) =− 1
2
σ2
X

(
e2αs−1

2α
(ω1 + ω2)2 + e2βs−1

2β
ω2

2 − 2 e
(α+β)s−1
α+β

ω2(ω1 + ω2)
)

− 1
2
σ2
Y
e2βs−1

2β
ω2

2 − ρσXσY
(
e(α+β)s−1

α+β
ω1 − e2βs−1

2β
ω2

)
ω2.

(5.5)

6 Conclusions

In this work, we have addressed the problem of the decision of investing, when both the

value of the project and the investment follows a mean-reverting dynamics. In this case,

the optimal policy depends on both the value of the project and the investment level,
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rather than just on their ratio. The former is known to be the case when the value and

the investment follow GBM dynamics. This phenomenon precludes the use of a trigger

curve for determining the investment frontier, which has been recognized, since the work

by McDonald and Siegel (1986), as a specially convenient representation. For a particular

class of mean-reverting dynamics, we are able to show that such an investment frontier

can be represented just by the ratio between the project value and the investment level.

In particular, the dynamics of the ratio is also mean-reverting. Nonetheless, the Fourier

Space Time-Stepping method, developed by Jackson, Jaimungal, and Surkov (2008) and

Jaimungal and Surkov (2009), can be used to numerically explore the trigger levels in such

models.

A European Option Pricing Formulae

In this appendix we derive the value of the European option to invest in a project with

stochastic investment and project value. The value is

Opt0 = e−rTE[(VT − IT )+ |F0]

= e−rT ET

[(
VT
IT
− 1

)
+

∣∣∣∣F0

]
E[IT |F0]

= e−rTET [(ξT − 1)+ |F0] E[IT |F0] (A.1)

where, ET [·] represents expectations with respect to a new measure PT defined via the

Radon-Nikodym derivative process

ηTt ,

(
dPT

dP

)
t

=
E[IT |Ft]

E[IT |F0]
, and ξt ,

E[VT |Ft]

E[IT |Ft]
.

10



Note that (i) ξT = VT/IT and (ii) ξt is a PT -martingale under any modeling assumptions

for Vt and It (as long as It is strictly positive). Property (ii) can be seen from the following

simple computation (0 ≤ s ≤ t):

ET [ξt|Fs] = E
[

E[VT |Ft]

E[IT |Ft]
.
Et[IT ]

E0[IT ]

∣∣∣∣Fs

]/
E[IT |Fs]

E[IT |F0]
=

E [E[VT |Ft]|Fs]

E[IT |Fs]

=
E[VT |Fs]

E[IT |Fs]
= ξs .

For our model (2.1)-(2.2), we have

XT = e−α(T−t) Xt + σX

∫ T

t

e−α(T−u) dWX
u ,

YT = e−β(T−t) Yt + σY

∫ T

t

e−β(T−u) dW Y
u ,

so that,

E[VT |Ft] = exp
{
θ + δ(T − t) + e−α(T−t) Xt +

σ2
X

4α

(
1− e−2α(T−t))} ,

E[IT |Ft] = exp
{
φ+ e−β(T−t) Yt +

σ2
Y

4β

(
1− e−2β(T−t))} .

These expressions provide an explicit formula for the ξt process. Further, using Ito’s lemma

and the fact that ξt is a PT -martingale, implies

dξt
ξt−

= σXe
−α(T−t)dW T,X

t − σY e−β(T−t)dW T,Y
t ,

where W T,X
t and W T,Y

t are correlated standard PT -Brownian motions. Consequently,

ξT
d
= ξ0 exp

{
−1

2
σ̃2 + σ̃Z

}
,
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where Z is a standard normal random variable and σ̃ is provided in (3.2). Since ξT is

log-normally distributed, the remaining unknown expectation in (A.1) is

ET [(ξT − 1)+|Ft] = ξtΦ(d+)− Φ(d−) ,

with d± defined in (3.3). The final pricing result (3.1) is now an easy consequence.

References

Berk, J. B., R. C. Green, and V. Naik (1999). Optimal investment, growth options, and

security returns. Journal of Finance 54 (5), 1553–1607.

Blenman, L. and S. Clark (2005). Options with constant underlying elasticity in strikes.

Review of Derivatives Research 8 (2), 67–83.

Cartea, A. and M. Figueroa (2005). Pricing in electricity markets: a mean reverting

jump diffusion model with seasonality. Applied Mathematical Finance 22(4), 313335.

Dixit, A. and R. Pindyck (1994). Investment under Uncertainty. Princeton University

Press.

Elliott, R. J., H. Miao, and J. Yu (2007). Investment Timing Under Regime Switching.

Working paper series, SSRN.

Engle, R. F. and C. W. J. Granger (1987). Co-integration and error correction: repre-

sentation, estimation, and testing. Econometrica 55 (2), 251–276.

Ewald, C.-O. and W.-K. Wang (2007). Irreversible investment with cox-ingersoll-ross

type mean reversion. Technical report, SSRN.

Fischer, S. (1978). Call option pricing when the exercise price is uncertain, and the

valuation of index bonds. Journal of Finance 33 (1), 169–176.

12



Jackson, K., S. Jaimungal, and V. Surkov (2008). Fourier space time stepping for option

pricing with levy models. Journal of Computational Finance 12 (2), 1–29.

Jaimungal, S. and V. Surkov (2009). A levy based framework for commodity derivative

valuation via fft. Technical report, University of Toronto.

Longstaff, F. and E. Schwartz (2001). The Review of Financial Studies 14(1), 113–147.

Margrabe, W. (1978). The value of an option to exchange one asset for another. Journal

of Finance 33 (1), 177–186.

McDonald, R. and D. Siegel (1986). The value of waiting to invest. Quarterly Journal

of Economics 101, 707–728.

Metcalf, G. and K. Hasset (1995). Investment under alternative return assumptions.

comparing random walk and mean revertion. J. Econ. Dynamics and Control 19,

1471–1488.

Sarkar, S. (2003). The effect of mean reversion on investment under uncertainty. Journal

of Economic Dynamics and Control 28, 377–396.

Tourinho, O. A. F. (1979). The option value of reserves of natural resources. Technical

report, University of California, Berkeley.

13



0 2 4 6 8 10
0

10

20

30

40

50

Time

P
ro

je
ct

 V
al

ue

 

 

0 2 4 6 8 10
0

5

10

15

20

25

Time

In
ve

st
m

en
t C

os
t

 

 

0 2 4 6 8 10
0

2

4

6

8

Time

V
al

ue
/In

ve
st

m
en

t

V(t)
mr level

I(t)
mr level

(a) ρ = 0

0 2 4 6 8 10
0

10

20

30

40

50

Time

P
ro

je
ct

 V
al

ue

 

 

0 2 4 6 8 10
0

5

10

15

20

Time

In
ve

st
m

en
t C

os
t

 

 

0 2 4 6 8 10
1

1.5

2

2.5

3

Time

V
al

ue
/In

ve
st

m
en

t

V(t)
mr level

I(t)
mr level

(b) ρ = 1

Figure 2.1: A sample path of project value and investment amount. The lines label mr
level are the equilibrium mean-reverting levels for the value and investment, while stock
level represents the stochastic level ηt. The model parameters are: α = 1; θ = ln(20);
σX = 0.8; β = 1; φ = ln(10); σY = 50%, δ = 2% and λ = 0.
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Figure 3.2: The price surface and optimal exercise trigger for a 1 year European option
to invest in a project with two differing rates of investment mean-reversion. The model
remaining parameters are as follows: α = 1, θ = ln(20), σX = 80%, φ = ln(10), σY = 50%,
ρ = 0.5, δ = 2%, r = 5%.
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Figure 3.3: The α and β sensitivity of the optimal exercise trigger for a 1 year European
option to invest in a project. The remaining model parameters are as in Figure 3.2 .
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Figure 4.4: Trigger curves assuming yearly exercise dates. The dashed line indicates the
maturity trigger curve of V = I. Each curve above the dash represents the trigger with
one more year remaining to maturity. The model parameters are as in Figure 3.2.

17



0

2

4

6

8

10

0
10

20
30

40
50

60
0

1

2

3

4

5

6

7

8

Time
Project Value

V
al

ue
 / 

In
ve

st
m

en
t

(a) V/I versus V

0
2

4
6

8
10

5

10

15
0

10

20

30

40

50

60

70

80

90

TimeInvestment

P
ro

je
ct

 V
al

ue

(b) V versus I

Figure 4.5: The trigger surface together with a sample path for a ten year option to invest
with daily exercise decisions.
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