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Abstract—Male androgenetic alopecia, popularly known as male
baldness, is a type of hair loss affecting more than half of males
at some point in their lives. Despite several advances in medicine,
the biological representation of baldness in computer graphics
has not yet been an object of research. Designers still need to
create models or use pre-existing ones without relying on any
biologically plausible methodology available in the literature. This
paper presents the first computational model of male baldness by
simulating hair loss based on the Hamilton–Norwood classification.
Given a 3D head model and its corresponding texture, our
method models the hair dynamics with time by changing the
texture according to a level of baldness using heat diffusion.
Visual results are presented, together with an assessment from
a dermatologist specializing in hair transplant, who considered
the results very plausible and valuable for clinical usage. Beyond
computer graphics applications, our method may also help in
medical research, clinical use, and entertainment.

I. INTRODUCTION

Aging is a universal process intrinsic to humans, and many
other living forms [1]. Through time, our bodies undergo
changes in several dimensions: psychological, physiological,
environmental, behavioral, and social [2]. We are primarily
interested in visible changes in our bodies for computer
graphics. One of these changes is hair loss, also called
Androgenetic Alopecia, or simply baldness. This condition
has a large prevalence among humans in general and, with a
higher incidence in white males [3], is the focus of our study.
Other ethnicities and females are left for future work.

Research in hair-related topics in computer graphics has
increasingly addressed rendering [5], animation [6], and
modeling [7]. Nevertheless, the dynamic aspect of hair loss
has not been addressed before, except for 2D manipulation of
images to simulate face aging, including hair loss and graying
[8] [9].

Our main contribution here is a model for hair loss following
common clinical practice standards for assessing baldness
levels. Given a 3D human head model with face texture and
hair texture, common assets in graphics tasks, we use heat
diffusion to simulate the advance of hair loss on the scalp as
an interpolation process. Our method is directly applicable to
the aging of virtual humans since hair loss is one trait usually
lacking in virtual aging [8]. Our work may also be relevant
for biological and medical research on hair loss, given the
many possibilities of simulation scenarios for patients seeking
treatment.

Fig. 1. Hamilton–Norwood scale for male alopecia. Adapted from [4].

II. BIOLOGICAL BACKGROUND

The incidence of baldness in men is roughly proportional
to age (e.g., 30% of men in their 30s suffer from baldness).
Gan and Sinclair [10], in a study on the age-related prevalence
of balding, presented the data from a sample of 332 men,
showing, on average, a 10% loss every ten years. In a study
of nearly 53,000 UK men [11] with a mean age of 57.2 years,
32% reported no hair loss, 23% reported slight hair loss, 27%
reported moderate loss, and 18% reported severe loss. Despite
using self-assessment by the individuals themselves, these
results can be used as an approximation of prevalence. Female



pattern baldness is less prevalent than in males. According to
Norwood [12], in a study of 1,006 white women, the incidence
is higher with age, but in smaller proportions than the male
incidence, reaching, for example, 25% of women aged 60–69
and 32% of women aged 80–89.

The possible evolution patterns of male alopecia were
initially established by Hamilton [13] and revisited by Norwood
[14]. Although there are other scales, the Hamilton–Norwood
(HN) scale, illustrated in Fig. 1, is the golden standard
classification in clinical medicine today. Fig. 1 shows images
indicating the different stages of baldness patterns and provides
a reference standardizing the discussion on the condition. In
men, the most visible aspects are hair loss on the sides of the
forehead and, together or not, a loss in the crown (top of the
head) [15]. The scale goes from I to VII with two alternative
paths. One is the III Vertex, a variant of stage III where there
is also loss on the vertex of the head. The other alternative
path is the sequence marked with A (II A to V A), where there
is no loss in the vertex area.

There is still no consensus on the causes of androgenetic
alopecia, although the process is well-known [16]. Research
on hair loss for medical applications has concentrated chiefly
on understanding the life cycle of human hair [17] [18]. From
a biological point of view, no comprehensive model explains
the overall loss of hair process.

III. RELATED WORK

In Computer Graphics, face aging is a reasonably researched
area, particularly in 2D [19]. These works approach hair loss
as a “side-effect” of face aging algorithms, which are not the
primary concern of this paper. The 2D approaches manipulate
an input image to look like the person in the image has aged
while trying to maintain some resemblance. With only one
picture as input, this is a complex problem.

Suo et al. [8] modeled face aging as a Markov process and
used a large annotated face set of images for their results. More
recently, Antipov et al. [9] approached the same problem using
generative adversarial networks (GAN). From a previous GAN
model, they added face aging in the architecture of the network.
The results include baldness.

Modeling human beings in 3D has always been a challenge
for computer graphics researchers because this task has many
dimensions. Many applications need virtual humans, such as
medicine, ergonomics, entertainment, garment design, training,
and simulations. Already in 1993, Badler [20] recognized the
potential of virtual counterparts for humans and consolidated
human modeling as a more efficient alternative for several
studies centered on the human being. Progressively, several
more specific aspects have become the focus of research
on human beings in the various areas of computer graphics:
geometric modeling, rendering [21], and animation [22]. Few
works include aging as a goal; most, if not all, focus on facial
traits, such as wrinkles [23], skin aging [24], and gray hair
[25], not addressing balding.

Modeling and rendering of hair in computer graphics have
evolved significantly in recent years. Several works address the

various aspects associated with hair: rendering, simulation for
animations, styling, and computational efficiency. The survey
by Ward et al. [26] presents the main aspects of hair modeling
in computer graphics. Hair rendering has achieved increasing
levels of visual fidelity. Such high levels of realism are partly
due to a better understanding and more complex modeling
of the hair structure and its interaction with light. Chiang et
al. [27] presented a model using current biological knowledge
about hair structure, applying path tracing to hair and animal
fur. Currently, several approaches use deep learning for the
rendering task [5], [28]–[30], with good results. Bao and Qi
[7] detailed image-based approaches as input to modeling and
simulation. For animation tasks, Wu and Yuksel [6] presented
a real-time approach; other works focused on the interaction
of hair with external elements such as water [31].

Despite all these advances, current solutions have not
addressed the problem we are dealing with in this project:
modeling male androgenetic alopecia.

IV. METHODOLOGY

Given a 3D human head model and its face texture, our
model simulates the advance of hair loss on the scalp. We
describe our methodology in four parts (see Fig. 2). We start
by presenting the input. Next, we detail the preprocessing
steps, which prepare the data used by our alopecia simulation
algorithm, our third step. Finally, we convert our generated
data to a sequence of images, producing our output.

Input. Our method receives a male human head 3D model and
its corresponding texture. We assume the texture is oriented
with the neck at the bottom and the hair at the top, following
current practice in most 3D modeling systems. If the texture is
available only for the whole model, we assume the user selects
the region of interest corresponding to the head. We perform
our computations on the 2D texture map corresponding to the
hair region, which is later mapped to the 3D shape.

Preprocessing. Preprocessing starts by grey scaling and bi-
narizing the target input texture to separate the skin areas
(white) from the hair ones (black). The system requires the
user to manually produce the key target images according to the
Hamilton–Norwood (HN) scale, which will serve as keyframes
for the interpolation stage. To compute the entire simulation,
the user must produce all 12 HN key images illustrated in
Fig. 1.

We also require the user to select a point corresponding to
the center of the parietal whorl (PW) (Fig. 3a). A hair whorl
is a patch of hair growing in a circular direction around a
visible center. According to Park et al. [32], for white males,
this region is located on average 6.25 cm below the vertical
bimeatal line (VM) and 7.79 cm above the horizontal plane
(HR). Our methodology computes the same average positions
given by an orthographic view facing the back of the head,
shown in Fig. 3b. This step is necessary to synthesize models in
which hair loss emerges from the head’s crown. The user must
also ensure that the selected point belongs to the corresponding
key images that include alopecia in the crown. We use this



Fig. 2. Overview of our technique. Input: 3D head model and its texture. Preprocessing: construct the key stages of the HN classification from the input
texture and selects the vertex seed point. Interpolation: process the target’s alopecia textures through time. Output: 3D model with its alopecia stages.

(a) (b)

Fig. 3. Landmarks of measurement for parietal whorl position. (a) Sketch
extracted from [32]; (b) Corresponding lines in our 3D model.

information only for the HN transitions III→III Vertex and
III→IV. Since both the HN-Scale keyframes and the parietal
whorl vary according to the inputs (texture and 3D model), the
user must manually provide this information.

Interpolation. Given the source and destination key target’s
texture from the previous step, we present an interpolation
algorithm that simulates hair loss. Since the alopecia hair loss
process is gradual, our method is inspired by heat propagation
through time [33], although there is no evidence or suggestion
that heat is a cause for alopecia. We simulate the current hair
presence (and absence) in each synthesized texture produced
by each algorithm iteration between key stages, expressing
warming over time. We represent heat by white zones, which
expand towards black zones, increasing their heat and thus their
whiteness. The propagation velocity is the same for all regions.
We opted not to introduce any further alteration since we
found no supporting evidence in the literature. Our algorithm
produces several mid-level textures indicating the current hair
loss level between the source and destination key textures.

We start by computing a guide mask given by the difference
between the source and target key textures. The guide mask
limits the heat expansion area, which shall be accessible only
between the keyframes. Given the source image and its guide
mask, our algorithm computes the 8-connected pixel average
for each black or gray pixel and substitutes its previous value
only if the corresponding pixel in the guide mask is white. This
process is a discretization of Laplace’s equation for steady-state
heat distribution. We then multiply the result by a factor to
increase the speed rate to ensure no changed pixel may be
higher than the maximum white value. We define this value
through experimentation, representing a percentage gain over
the mean value. The larger the value, the higher the rate at
which the white pixels spread through the texture. We find that
the value of 1.001 provided a reasonable rate of expansion
of grey pixels while also allowing the white to spread. Our
algorithm repeats this process until the source image equals the
destination image. Each iteration in the process corresponds
to an alopecia stage progressing towards the next key texture.
We detail our interpolation pseudocode in Algorithm 1. This
process is repeated for each possible transition between two
key textures, as shown in Fig. 1, generating a dataset containing
all the interpolated textures.

Our interpolation algorithm could eventually never stop due
to the oscillation provided by the floating-point arithmetic. We
keep track of the white pixel numbers for each in-between frame
we compute to avoid this situation. Our algorithm terminates
when the number of white pixels is less than a preset threshold
obtained through experimentation.

Output. We map the synthesized textures generated in the
model to the 3D head shape and capture their sequence frames,
producing an image sequence as output. Although the total
number of keyframes is 12 (as shown in Fig. 1), our system
needs to compute all the 13 possible keyframe transitions
(represented by the arrows in Fig. 1). Once this step is complete,



Algorithm 1 Heat diffusion interpolation
Input: keyTexSrc, keyTexDst, speed
Output: finalTex

1: finalTex ← keyTexSrc
2: maskTex ← keyTexDst − keyTexSrc
3: repeat
4: for each pixel (x,y) in finalTex do
5: if maskTex(x,y) is white then
6: if finalTex(x,y) is not white then
7: finalTex(x,y) ← speed · average8(finalTex,x,y)
8: if finalTex(x,y) > white then
9: finalTex(x,y) ← white

10: end if
11: end if
12: end if
13: end for
14: until finalTex = keyTexDst
15: return finalTex

the user may consult all the possible HN animation sequences.

V. RESULTS AND DISCUSSION

This section presents the results of our method. We imple-
mented our prototype using C++ and Python programming
languages and an Intel Core i7 10700K to compute the test
results. We present the computing times for all iterations in
Table I. We considered only the time spent to process all the
algorithm iterations through each keyframe transition without
writing the resulting textures to disk. We also set the speed
parameter for all our simulations to 1.001, and the algorithm’s
stop criteria considered 100 pixels. We chose the parameters
through experimentation. The number of iterations (and thus
also the time) decreases the higher the speed parameter
(assuming the speed values are larger than 1). We applied
our technique to a 3D model and its companion texture with a
resolution of 8192 x 8192 pixels, focusing only on the head.
We certified that the model came from a 3D scanner to ensure
the result would be as faithful to human anatomy [34]. The
high computing times can be justified due to the interpolation
process. We do not need to recompute the algorithm for a
corresponding set once this step is complete.

We start by presenting some visual results of our technique
based on the HN scale. Next, we measure and discuss the hair
loss ratio for each in-between frame, i.e., each intermediate
frame given the start and final HN images. Finally, we compare
our simulation results with actual images from alopecia patients.

Since other aging characteristics such as wrinkles and white
hair are out of the scope for our work, we opted for a simple
rendering to help isolate these features. We are not rendering
hair since we want to focus on the pattern, but our textures
could define where hair would grow or not on the scalp, with
density controlled by the texture map. Moreover, showing the
model as a dummy brings the results visually closer to the
original keyframes provided by Hamilton–Norwood. We also
designed the keyframes only for the left side of the model’s

texture mapping and then replicated the results for the right
side. Thus, our algorithm only computed the average for the
left half and copied its results to the corresponding pixel on
the right side.

Visual results. Fig. 4 presents two detailed sequences from the
HN keyframe transitions I→II and IV→V. We can observe that
our method correctly considers the vertex alopecia expansion,
observable in HN transitions IV→V. The sequences start with
the original preprocessed texture as the source keyframe (HN-I
and HN-IV) and aim to achieve the final keyframe (HN-II
and HN-V) by interpolating our algorithm. Even though we
opted to show only the most significant in-between frames, the
algorithm required computing every mid-step.

Hair loss percentage simulation. To compare our results with
the general hair loss statistics, we measure and discuss the hair
loss ratio for each in-between frame according to the current
number of black and white pixels compared to the total. We
calculate the percentage of hair loss every ten steps for each
keyframe transition and plot this as a graph available in Fig.
5. We can observe that the curve follows the same pattern as
the age-specific prevalence of male baldness [10].

We may use this function to provide a rough age estimate
according to the age-specific prevalence of male baldness,
according to [10]. We interpret this data along with the hair
percentage function computed by our model, estimating the
user may take on average five years to pass from keyframes HN
I to II. Further results containing the percentage of hair loss
in each HN keyframe transition are available in Table I. We
do not intend to classify the model’s age accurately. We only
provide an estimate that can help non-biological applications.

Evaluation with real medical images. We compared our results
with actual scalp images already classified accordingly to the
HN scale by an expert in the area. Since there is no previous
work on alopecia simulation in computer graphics, we validated
our method by directly comparing our results with these pre-
classified images and manually choosing the middle point
texture that best matches the patient in the respective HN scale.
Fig. 6 shows a comparison result for four images. We manually

TABLE I
NUMBER OF IN-BETWEEN FRAMES, COMPUTING TIMES, AND RATE OF HAIR

LOSS FOR THE HAMILTON–NORWOOD KEYFRAME TRANSITIONS.

HN transition Iterations Time (s) Hair loss rate
I → II 2698 18.043 5.44%
I → II-A 3592 23.152 9.54%

II → III 3361 21.355 15.02%
II-A → III-A 3173 19.862 15.00%
II → III-V 5315 29.881 11.35%
III → IV 4353 24.113 20.10%
III-A → IV-A 2931 17.565 18.68%
III-V → IV 2914 16.884 19.88%
IV → V 3603 19.614 27.29%
IV-A → V-A 6739 37.859 30.64%
V → VI 3960 20.403 50.74%
V-A → VI 4719 24.289 51.02%

VI → VII 6796 30.410 67.43%



Fig. 4. Some of the in-between frames, textures, and models resultant from the keyframes HN transitions I–II (top) and IV–V (bottom).

Fig. 5. Percentage of hair loss from our simulation for HN I→II.

selected the best in-between frame match given the real image
and its HN keyframe transition already classified by the expert.
We achieved similar results concerning the hair region covered,
considering the hair density even without a hair rendering. We
received an assessment from a dermatologist specializing in
hair transplant, who considered the results very plausible and
useful for clinical usage.

VI. CONCLUSION

We presented a novel model for hair loss simulation based
on the standard Hamilton–Norwood classification. Our method
receives a 3D model and its texture and simulates hair loss
along time by changing the texture according to a level of
alopecia through a heat diffusion technique. We showed simple
rendered results, along with assessments from an expert in the
area. Our work is the first paper to address hair loss in computer
graphics, to the best of our knowledge. Although we use simple

Fig. 6. Evaluation of our results: real patient images versus generated models.

renderings, one may incorporate hair simulation to increase the
feasibility for medical and industrial applications. Hair density
could come directly from the color in the in-between textures
and the transition from black to white, expressing gradual hair
loss. Our work has potential for computer graphics applications,
such as biological and medical research, clinical usage, and
entertainment.

Our work has a few limitations. Our algorithm works directly
on the head texture without any modifications to the texture
coordinates provided by the model. We opted to isolate the
3D model result through a simple rendering because we do
not deal with further age aspects, such as wrinkles and white
hair. However, our work would benefit from a more realistic
rendering, helping to evaluate the results compared with actual



patients’ hair pictures. Our work is also heavily user-dependent.
The automatization remains a challenging task since there is
no biological model that describes the scalp’s transformations
mathematically along the process.

We would also like to extend our technique to support
females and other ethnicities. We also may work on a system
with a multiresolution interpolation technique to improve
simulation times. Furthermore, we would like to generate the
specific texture according to some biological input parameters
provided by the system’s user. For instance, we would continue
the simulation using its hair texture according to the patient’s
genetic information, age, and current hair loss. Finally, we
want to explore direct simulation on the 3D model, taking
the mesh curvature into account to decrease the user’s manual
work required by our model.
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