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Abstract—We present a GPU-based beam-casting method for
rendering implicit surfaces in real time with anti-aliasing. We
use interval arithmetic to model the beams and to detect their
intersections with the surface. We show how beams can be used
to quickly discard large empty regions in the image, thus leading
to a fast adaptive subdivision method.
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I. INTRODUCTION

Rendering surfaces with ray casting is perhaps the clearest
example of a potentially embarrassingly parallel problem in
computers graphics: in principle, all pixels can be computed
in parallel. In this paper, we present a case study of rendering
implicit surfaces in parallel in the GPU using CUDA.

In the simplest case, rendering implicit surfaces with ray
casting by point sampling requires the solution of one non-linear
univariate equation for each pixel. (Using supersampling to
reduce alias requires solving more equations per pixel.) Since
current GPUs do not have a million processors, we cannot
render large images with one processor per pixel and some
acceleration scheme is still needed. We employ adaptive beam
tracing based on interval arithmetic to guarantee that all parts
of the surface are seen and to quickly discard pixels that do
not see the surface. To achieve maximum performance, current
GPUS require that similar work is done by each processor. We
discuss how to organize the computation under this restriction.

II. RELATED WORK

Specialized rendering methods exist for some classes of
surfaces, especially algebraic surfaces, i.e., implicit surfaces
defined by polynomial equations. Hanrahan [1] was one of the
first to describe a ray tracing method that exploits Descartes’s
rule of signs to isolate roots of polynomials. He also suggested
the possibility of implementing ray casting in hardware to
exploit parallelism.

Interval methods were used in ray casting for parametric
surfaces by Toth [2] and by Barth et al. [3] and for implicit
surfaces by Mitchell [4], by Duff [5]], and by Stolte [6].
Affine arithmetic [7] was used to render implicit surfaces by
Figueiredo and Stolfi [8] and by Cusatis Jr. et al. [9]]. Beams
were introduced in rendering by Heckbert and Hanrahan [10].

With the advent of the GPU, interest in fast rendering of
implicit surfaces has been renewed. Loop and Blinn [11]] de-
scribed specialized methods for rendering low-degree piecewise
algebraic surfaces in Bernstein form. Seland and Dokken [12]
rendered low-degree algebraic surfaces by using blossoms

of trivariate Bernstein—Bézier functions over tetrahedra. The
Bernstein—Bézier form allows a form of interval analysis. Knoll
et al. [[13]] described CPU and GPU methods using both interval
and affine arithmetic. Singh and Narayanan [14] ray cast
implicit surfaces by sampling rays adaptively based on the
distance to the surface and the closeness to a silhouette. They
handle multiple roots by using interval analysis based on first-
order Taylor approximations.

Closer to our approach is the work of Flérez et al. [[15]], [[16]]
who described an interval beam-casting method for rendering
implicit surfaces with adaptive anti-aliasing. Their methods
ran on the CPU and took several minutes to produce high-
quality images. Florez’s thesis [17] described how to improve
performance using a GPU or a cluster of workstations, achieving
a couple of seconds per frame at the time.

III. BEAM CASTING

We shall present two rendering algorithms that cast beams
toward the surface. A beam is a right prism having a rectangular
base in image space and contains all rays that can be cast
starting in its base. The first beam-casting algorithm performs
uniform subdivision of the image and uses one beam per
pixel. The second beam-casting algorithm performs adaptive
subdivision of the image and uses large beams to eliminate
large empty regions in the image. Both methods use interval
bisection along the beam to locate the surface.

A. Interval bisection

To render a surface given implicitly by f(x,y,z) =0 with
beam casting, we need to find the intersection of a beam with
the surface. We do this by performing interval bisection on
the beam, which recursively divides the beam into blocks,
searching for a small block nearest the viewer that contains
points of the surface. The recursion is guided by the evaluation
of an interval extension F of the implicit function f. The
simplest interval extension is the natural interval extension,
obtained by replacing all primitive operations and functions
in the expression of f with their interval counterparts [18],
[19]. Interval extensions are not limited to algebraic functions
and are easy to implement using operator overloading, which
CUDA supports.

The crucial property of an interval extension F is that for
each box B in R?, F(B) is an interval containing f(B). Thus,
if for a block B we find that 0 ¢ F(B), then a fortiori we
know that 0 € f(B) and we have proved that the block cannot
cross the surface and so can be discarded. Interval bisection is



able to discard most beams that are far away from the surface.
However, since F'(B) usually contains f(B) properly, we cannot
conclude from 0 € F(B) that the surface does cross B. As a
consequence, beams near the surface may not be discarded as
early as possible.

B. Interval beam casting

We model a beam as U xV x T, where U XV is a base
rectangle in image space and T is the depth interval, starting
at the near plane and ending at the far plane. A beam is a pixel
beam when its base corresponds to the area of a pixel.

The workhorse of both our methods is the BeamCast
procedure, which performs interval bisection on the beam
looking for an enclosure of the part of the surface seen from
the base of the beam. BeamCast stops searching either when
it can prove that the beam does see the surface or when the
beam block is thin enough, as measured by a tolerance €.

The interval function F requires boxes in world coordinates
and BeamCast starts by converting the beam U XV X T to an
axis-aligned box X XY x Z in world coordinates. Evaluating F
on that box gives an interval estimate of the entire range of f
in the beam. As mentioned earlier, this estimate is very likely
an overestimate, especially because the box can be much larger
than the beam. Nevertheless, if the estimate does not contain 0,
we can be sure that the beam does not intersect the surface.
If BeamCast cannot discard a beam block for this reason, it
bisects the block by splitting it across the depth direction and
explores the two sub-blocks, taking care to explore the sub-
block nearest to the viewer first, so that it can report the visible
part if any.

When the bisection cannot discard a beam, it finds a small
block that is likely to contain a piece of the surface.

C. Uniform versus adaptive subdivision

The Uniform method simply calls BeamCast for each pixel
beam and paints the image with the background color if
BeamCast returns the empty interval or with the proper surface
color computed at the center of the returned interval otherwise.
The Adaptive method calls BeamCast for beams with large
bases, starting with the entire image.

To improve the uniform subdivision method, we use two
simple but important observations, which are exploited in the
Subdivide procedure. The first one is that empty regions in the
image are generally larger than the area of just one pixel. We
exploit this fact and eliminate large regions at once by using
beams with larger bases. The second observation is that the
interval returned by BeamCast gives us an approximation to
the position of the piece of the surface seen by the beam. Thus,
after we cast a large beam, we can use the lower bound of the
returned interval as the start depth for its sub-beams.

Subdivide takes a beam base U x V, corresponding to an
region of the image, a starting depth w for the beam, and a
user-supplied tolerance €. The value d is used to track the
recursion level. As described earlier, Subdivide paints the base
rectangle with the background color if it can discard the beam
using BeamCast. Otherwise, Subdivide splits the rectangle

procedure BeamCast(U,V,T,€)
B+ Box(UxV xT)
if 0 ¢ F(B) then
return 0
else
if diam(T) < € then
return T
else
T, T, < split(T)
J < BeamCast(U,V,T})
if /£ 0 then
return J
else
return BeamCast(U,V,T>)
end
end
end
end

procedure Paint(U,V,T)

if T =0 then
I(U,V) + background
else

I(U,V) < color(center(U,V,T))
end
end

procedure Uniform()

for all pixels U x V in the image Uy x V) do
Paint(U,V,BeamCast(U,V, [near,far],€))

end
end

procedure Subdivide(U,V,w,d,€)
T < BeamCast(U,V,|w,far],€)
if T =0 or d = maxdepth then
Paint(U,V,T)
else
U, Uy <+ Split(U)
V1,Vo < split(V)
a < min(T)
Subdivide(Uy,V,a,d+1,€/2)
Subdivide(Uy,V2,a,d +1,€/2)
Subdivide(U,,Vy,a,d+1,€/2)
Subdivide(U,Vy,a,d+1,€/2)
end
end

procedure Adaptive()
Subdivide(Uy, Vy,near,0, €)
end




Fig. 1. Behavior of the adaptive method for the Octdong surface. The colors
represent the level at which the boxes were eliminated. The subdivision reaches
the maximum level at the white pixels, which show the surface

into four equal parts and recursively calls itself for each part.
If Subdivide reaches the maximum allowed depth, then the
surface is sampled and the base rectangle is painted with the
corresponding color. Note that care is taken during recursion to
adjust the tolerance to €/2, since for beams with large bases,
the tolerance for BeamCast can be large as well, but as we
split the bases to gain accuracy, we also need to use a smaller
tolerance for BeamCast.

The behavior of the adaptive method is illustrated in Figure|[T]
Note how regions that are far from the surface are eliminated
with larger beams while regions closer to the surface require
smaller beams before they are eliminated. This reflects the
overestimation inherent to interval methods.

D. Anti-aliasing

One simple way to reduce the aliasing in the rendering is
to take multiple samples per pixel and combine the results
to find the pixel color. This is easily achieved in Subdivide
by increasing the value of maxdepth beyond the resolution
of the desired image and by making color combine the
contributions of subpixels. Moreover, by increasing maxdepth,
we also increase the precision of the algorithm along the depth
direction, which gives us not only better images, but also a
better approximation of the surface geometry, thus mitigating
the effects of interval overestimation.

E. Implementation details

In our implementation we use OpenGL, GLSL, and CUDA.
We start by using OpenGL to draw a quad covering the whole
screen area. This quad is then textured by a shader written in
GLSL. The actual surface rendering happens when we generate
the texture. We allocate a texture buffer in the GPU main
memory and then map it to the CUDA address space. In CUDA,
we fill the buffer with the pixel colors.

The implementation of Uniform is straightforward. First, we
create a 2D CUDA grid with the same dimensions of the final
texture. Each thread in the grid executes the CUDA kernel that
implements BeamCast. The U and V parameters of BeamCast
are easily derived from the thread indexes, the T parameter is
the interval [—1,1], and € is set to a constant. The result of
the computation is saved in a memory buffer and later used in
the Color CUDA kernel, which implements the shading using
the normal computed from the gradient Vf.

The implementation of BeamCast in a CUDA kernel has a
few subtleties due to the CUDA architecture and to hardware
limitations. In particular, we cannot use recursive functions. To
circumvent this limitation we used a stack-based approach,
because the bisection algorithm can be seen as a depth-
first search on a binary tree. The naive implementation of
a stack proved to have very low performance, due to the
time needed for a CUDA thread to perform a global memory
transaction. Achieving high performance in a GPU requires
careful management of accesses to global memory and manual
caching of data in shared memory for repeated use. Thus, we
implemented the stack using one integer to hold the status of
the depth search. This integer stores in its bits the path taken
by the search; the number of bits used shows the depth. This
integer is stored in a thread register, allowing extremely fast
updates.

We can see Subdivide as a breadth-first search on a quadtree
in image space. At a given level, each cell is the base of a
beam, for which we call BeamCast. The result of BeamCast
is an interval that gives a lower bound to the position of the
surface on the cell. If this interval is not empty, then the cell
is subdivided and its children are queued to be processed in
the next level of the quadtree. If the interval is empty, the cell
is discarded. The cells of the active level of the quadtree are
processed concurrently by threads displaced in a 2D CcuUDA
grid. The output of one level is stored in a memory buffer
and is used as input to the next call. To ensure that we are
using the maximum processing power of the GPU at each
CUDA call, we start the the adaptive process by finding the
shallower subdivision level that fills the GPU. After all levels
are processed, the result is stored in a buffer and then used by
the shading CUDA kernel.

We have tried to reduce warp divergence by grouping threads
according to the spatial position of the beams.

IV. RESULTS

We tested the uniform and the adaptive beam-casting
methods on the surfaces shown in Figures [2] 3] and [4] Each
pair of images in these figures shows the same surface rendered



with one sample per pixel (left) and with four samples per pixel
as anti-aliasing (right). We have included a Blinn blob [20] to
show that the method is not restricted to algebraic surfaces.

The performance of the methods for rendering these surfaces
is shown in Tables[I|and [[I| for two image resolutions, 512 x 512
and 1024 x 1024 pixels. The results are given in frames per
second. We also give the relative performance of the two
methods. All tests were made with an NVidia GTX 470.

In almost all cases, we achieve real-time frame rates with
both methods. In all cases the adaptive method significantly
outperforms the uniform method. Moreover, for complex
functions the adaptive method gives near real-time frame
rates even for large high-quality images. As expected, the
performance depends on the complexity of the function defining
the surface: the performance decreases for complex expressions
due to interval overestimation caused by correlations and
probably also due to increased register pressure.

TABLE I
PERFORMANCE IN FPS FOR 512 X 512 IMAGES

1 sample per pixel 4 samples per pixel
| Unif | Adap | A/U || Unif | Adap | A/U

Sphere 860 | 1120 | 1.30 280 464 | 1.65
Dingdong 815 947 | 1.16 284 425 | 1.49
Klein 274 362 | 1.32 76 133 | 1.75
Mitchell 189 240 | 1.26 45 72 | 1.60
Octdong 544 660 | 1.21 173 267 | 1.54
Steiner 532 840 | 1.57 168 389 | 231
Tangle 185 244 | 131 49 86 | 1.75
Teardrop 842 | 1287 | 1.52 283 580 | 2.04
Barth 235 287 | 1.22 67 105 | 1.56
Heart 574 806 | 1.40 180 339 | 1.88
Chmutov 212 333 | 1.57 50 95 | 1.90
Blob 781 1322 | 1.69 257 570 | 2.21
TABLE 11

PERFORMANCE IN FPS FOR 1024 x 1024 IMAGES

1 sample per pixel 4 samples per pixel
| Unif | Adap | A/U || Unif | Adap | A/U

Sphere 300 447 | 1.49 79 140 | 1.77
Dingdong 300 412 | 1.37 83 142 | 1.71
Klein 88 131 1.48 21 41 1.95
Mitchell 54 70 | 1.29 13 23 | 1.76
Octdong 190 263 | 1.38 52 87 | 1.67
Steiner 180 377 | 2.09 48 137 | 2.85
Tangle 56 85 | 1.51 14 27 | 1.92
Teardrop 288 555 1.92 80 196 | 2.45
Barth 77 104 | 1.35 20 35 | 1.75
Heart 193 332 | 1.72 51 110 | 2.15
Chmutov 60 94 | 1.56 13 20 | 1.53
Blob 262 545 | 2.08 70 182 | 2.60

V. CONCLUSION

We have presented two simple methods for beam casting
implicit surfaces on the GPU. The first one uniformly samples
the surface using beam casting at each pixel. The second one
performs an adaptive space subdivision, using large beams to
eliminate empty regions and to optimize the casting of smaller
beams. We have shown that the adaptive subdivision method

can be used to efficiently super-sample the surface, generating
anti-aliased images in real time.

Florez et al. [15] described a similar adaptive subdivision
method, but for the CPU only. Their depth bisection method
is performed down to machine precision to classify image
regions into three classes (outside, inside, and undefined) to
detect aliasing. In our method the maximum level of depth
bisection depends on the level of the cell in the quadtree: larger
beams are bisected fewer times. We cannot expect to reach
machine precision in the depth bisection of beams with large
bases because the size of a cell limits the precision of the
interval evaluation on the corresponding beam blocks.

The CPU method by Flérez et al. [16] is similar in structure
to our uniform method but their anti-aliasing procedure is more
sophisticated. The GPU method in Flérez’s thesis [|17] is similar
to our uniform method but did not achieve real time.

Directions for future work

The first, and most natural, extension for this work is to
replace naive interval arithmetic with affine arithmetic for
interval evaluation [7[]. Besides the expected improvement
in the convergence speed due to quadratic convergence and
exploitation of first-order correlations, we believe that affine
arithmetic will help diminish the overestimation problems
related to the camera transformation because affine arithmetic
can represent beams directly, even if they are not axis-aligned.

We also wish to understand better the role of thread
divergence inside the CUDA warps. In our implementation
each beam is processed by one thread. If the threads in one
warp diverge, i.e., execute different computations, a huge
performance loss is inflicted. For instance, even if all but
one of the beams inside a warp are eliminated in the first steps
of BeamCast, all threads will still execute the full computation
until the remaining beam is eliminated or is entirely processed.
We plan to decrease thread divergence by using a thread
remapping mechanism, based on the geometric position of
the beam, relative to the surface.

Other extensions for this work include casting reflection and
refraction beams and shadow beams.
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Fig. 2. Results: 1 sample per pixel (left) and 4 samples per pixel (right).
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Fig. 3. Results: 1 sample per pixel (left) and 4 samples per pixel (right). Fig. 4. Results: 1 sample per pixel (left) and 4 samples per pixel (right).
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