
A Hybrid Method for Computing Apparent Ridges

Eric Jardim Luiz Henrique de Figueiredo
IMPA – Instituto Nacional de Matemática Pura e Aplicada, Rio de Janeiro, Brazil

ejardim@impa.br lhf@impa.br

Abstract—We propose a hybrid method for computing appar-
ent ridges, expressive lines recently introduced by Judd et al.
Unlike their original method, which works entirely over the
mesh in object space, our method combines object-space and
image-space computations and runs partially on the GPU,
taking advantage of modern graphic cards processing power
and producing faster results in real time.

Keywords-expressive lines; non-photorealistic rendering

I. INTRODUCTION

Expressive line drawing of 3D models is a classic artis-
tic technique and remains an important problem in non-
photorealistic rendering [1], [2]. A good line drawing can
convey the model’s geometry without using other visual cues
like shading, color, and texture [3]. Frequently, a few good
lines are enough to convey the main geometric features [4],
[5], [6]. The central problem is how to mathematically
define what good lines are: ideally, they should capture all
perceptually relevant geometric features of the object and
should depend on how the object is viewed by the observer.

There are several techniques (e.g., [7], [8], [9], [10], [11])
for expressive line rendering of 3D models, but no single
method has emerged as the best for all models and viewing
positions [5], [6]. Apparent ridges [11] have a relatively
simple definition and produce good results in many cases.

In this paper, we propose a hybrid method for computing
apparent ridges. Our main goal and motivation is achieving
better performance without compromising image quality.
While the original method [11] is CPU-based and works
entirely over the mesh in object space, our method combines
object-space and image-space computations and runs partially
on the GPU, exploiting the processing power of modern
graphic cards and producing faster results in real time.

II. PREVIOUS WORK ON LINE RENDERING

We start by briefly reviewing some of the lines that have
been proposed for expressive line drawing of 3D models.
These lines are illustrated in Figure 1.

Object contours or silhouettes [12] are probably the most
basic type of feature line: they separate the visible and the
invisible parts of an object. Geometrically, contours are the
loci of points where the normal to the surface of the object
is perpendicular to the viewing vector. Thus, contours are
first-order view-dependent lines, that is, they depend only on
the surface normal and on the viewpoint. Contours alone may
not be enough to capture all perceptually relevant geometric

features of an object, but every line drawing should contain
them [7]. Moreover, other lines, such as ridges and valleys
and suggestive contours, must be combined with silhouette
contours to yield pleasant and perceptually complete pictures.

Ridges and valleys [13], [14] are another traditional
type of feature line: they are the loci of points where
the maximum principal curvature assumes an extremum
in the principal direction (maxima at ridges and minima
at valleys). Ridges and valleys are second-order curves that
complement contour information because they capture elliptic
and hyperbolic maxima on the surface. However, ridges and
valleys often convey sharper creases than the surface actually
has. Moreover, some models have so many ridges and valleys
that the resulting image is not a clean drawing. Finally, since
ridges and valleys depend only on the geometry of the model,
and not on the viewpoint, these lines can appear too rigid
in animated drawings. View-dependent fading effects have
been proposed to mitigate this problem [9].

Suggestive contours [8], [15] are view-dependent lines
that naturally extend contours at the joints. Intuitively,
suggestive contours are contours in nearby views. More
precisely, suggestive contours are based on the zeros of
the radial curvature in the viewing direction projected onto
the tangent plane. For the radial curvature to achieve the
zero value in some direction, the interval between the
principal curvatures must contain zero. Thus, suggestive
contours cannot appear in elliptic regions, where the Gaussian
curvature is positive, and so suggestive contours cannot
depict convex features. Suggestive contours are visually more
pleasant than the previous lines because they combine view
dependency and second-order information to yield cleaner
drawings. Nevertheless, they still need contours to yield
perceptually complete pictures. Suggestive and principal
highlights [10] complement suggestive contours by including
positive minima or negative maxima of directional curvatures.
These highlight lines typically occur near intensity ridges in
the shaded image (suggestive contours typically occur near
intensity valleys).

Apparent ridges [11] is a recent technique that produces
good results in many cases. With a single mathematical
definition of what a good line is, apparent ridges depict
most features that are captured by other definitions and some
additional features not captured before. As explained below,
apparent ridges are based on a view-dependent curvature that
plays an analogue role for apparent ridges as the curvature



shaded

contours

ridges and valleys

suggestive contours

apparent ridges

Figure 1. Comparison of expressive lines for two 3D models. Contours
are essential, but insufficient to depict a shape. Ridges and valleys extend
contours, but angles are too sharp and appear at rigid places due to their view
independence (contours in green). Suggestive contours smoothly complement
contours in a view-dependent way but do not appear on convex regions
(contours in green). Apparent ridges depict features in a smooth and clean
view-dependent way. They appear at convex regions and contain contours.

does for ridges and valleys. Like suggestive contours, appar-
ent ridges combine both second-order information and view-
dependency. Unlike suggestive contours, however, contours
are a special case of apparent ridges and so do not require
extra computation or special treatment.

Lee et al. [16] described a GPU-based method that
renders lines and highlights along tone boundaries that
can include silhouettes, creases, ridges, and generalized
suggestive contours. Their work bears some resemblance
to ours but differs in its goals and methods.

III. APPARENT RIDGES

The key idea of the view-dependent curvature used to
define apparent ridges is to measure how the surface bends
with respect to the viewpoint, taking into account the
perspective transformation that maps a point on the surface
to a point on the screen. We shall now review how the view-
dependent curvature is defined and computed. For details,
see Judd et al. [11].

Given a point p on a smooth surface M , the shape operator
at p is the linear operator S defined on the tangent plane
to M at p by S(r) = Drn, where r is a tangent vector to M
at p and Drn is the derivative of the normal to M at p in the
r direction. The shape operator is a self-adjoint operator, and
so has real eigenvalues k1 and k2, known as the principal
curvatures at p; the corresponding eigenvectors e1 and e2

are called the principal directions at p.
Let Π be the parallel projection that maps M onto the

screen and let q = Π(p). If p is not a contour point, then
Π is locally invertible and we can locally define an inverse
function Π−1 that maps points on the screen back to the
surface M . The inverse Jacobian J−1

Π of Π maps screen
vectors at q to tangent vectors at p. The view-dependent
shape transform Q at q = Π(p) is defined by Q = S ◦ J−1

Π ,
where S is the shape operator at p. The view-dependent
shape transform is thus the screen analogue of the shape
operator.

The maximum view-dependent curvature is the largest
singular value of Q:

q1 = max
||s||=1

||Q(s)||

This value can be computed as the square root of the
largest eigenvalue of QT Q. The singular value q1 has a
corresponding direction t1 on the screen called the maximum
view-dependent principal direction. Apparent ridges are the
local maximum of q1 in the t1 direction, or

Dt1q1 = 0 and Dt1 (Dt1q1) < 0

This definition adds view dependency to ordinary ridges.
When a point moves towards a contour, q1 will tend to infinity
due to projection. Although the view-dependent curvature is
not defined at contours, q1 is well-behaved and achieves a
maximum at infinity. This means that contours can be treated
as a special case of apparent ridges.



Figure 2. The original method happens in object space and runs entirely on the CPU. Ours is a hybrid method that runs partially on the GPU.

IV. OUR METHOD

The main motivation of our method is to exploit the GPU
processing power to speed up the extraction of apparent
ridges without compromising image quality. Judd et al. [11]
presented a CPU-based method for finding apparent ridges
on triangle meshes. All computations are performed in object
space, over the 3D mesh. The result is a set of 3D lines
that lie on the mesh and approximate the actual apparent
ridges. These lines are then projected and drawn onto the
screen. In contrast, our method is a hybrid method: it has an
object-space stage and an image-space stage (see Figure 2).
We now explain the modifications needed in their approach
and some implementation details to achieve this goal.

As seen in Section III, apparent ridges are the loci of local
maxima of the view-dependent curvature q1 in the maximum
view-dependent principal direction t1. Judd et al. [11] extract
apparent ridges by estimating Dt1q1 at the vertices of the
mesh and finding its zero crossings between two mesh edges
for each triangle of the mesh. The estimation of Dt1q1 at
each vertex is done by finite differences, using the q1 values
of the adjacent vertices. Here lies the main bottleneck of
their method: the derivative computation is expensive and
must be repeated every time the viewpoint changes.

In our method, we split the rendering process into two
stages, which we shall discuss in detail below (see Figure 2).
In the first stage, which happens in object space, we estimate
the view-dependent curvature data over the 3D mesh. In
the second stage, which happens in image space, we extract
apparent ridges using edge detection, without computing
derivatives. The performance of this stage depends only on

the image size, not on the mesh size, providing an overall
performance improvement. Moreover, this split allows us to
use vertex and fragment shaders to run each stage on the
GPU, exploiting its processing power and parallelism. These
changes provide significant speedups, which we shall discuss
in Section V.

A. Object-space stage

In the first stage, q1 and t1 are estimated at each vertex of
the mesh. This is done in a vertex shader by the GPU using
the same computations performed by Judd’s method. The
result is packed into the color output RGB channels of the
vertex shader, using one channel for q1 and two channels for
pack t1, because t1 is a 2D screen vector (see Figure 3). The
vertex shader is executed every time the viewpoint changes.

The required 3D data (normal n, principal curvatures k1

and k2, principal directions e1 and e2) is estimated on the
CPU using a technique by Rusinkiewicz [17] implemented in
the trimesh2 library [18] and is passed to the vertex shader as
vertex information like colors and texture coordinates. This
3D data is computed only once because it does not depend
on the viewpoint.

Figure 3. Color coding of q1 and t1.



Figure 4. Laplacian-like adaptive filter. Filter setup is chosen according to the maximum view-dependent principal direction.

As discussed in Section III, q1 is a non-negative value and
achieves extremely high values near the contours. Thus, we
need to truncate the q1 value to fit into the channel interval
[0, 1]. Before this truncation, q1 must be scaled so that all
the local maxima lie in [0, 1]. To preserve precision, the
scaling factor cannot be too high or too low. We guess an
acceptable value for this factor empirically, using the feature
size of the model estimated by the trimesh2 library [18].
The user can then fine-tune it by hand if needed. For easy
manipulation, we introduced an exponential parameter τ so
the user can rapidly switch from small to large scales. The
scaled curvature value q is defined as

q = 2τq1

Since t1 is a normalized 2-dimensional vector, its com-
ponents lie in the [−1, 1] range. We use a simple affine
transform to map t1 to the [0, 1] range:

t =
1
2
((1, 1) + t1)

After that, the packed values of q1 and t1 are rasterized
to the screen, following the natural rendering pipeline. The
packed values are interpolated between the vertices by the
GPU. This will pass the information automatically to an
off-screen buffer, which will be input to the fragment shader
in the second stage.

B. Image-space stage

The main difference of our method is that we do not
extract apparent ridges by computing the zero-crossings of
Dt1q1. Instead, since t1 is a screen vector by definition, we
find the maxima of q1 in the t1 direction in image space.
We perform a simple edge detection in the off-screen buffer

computed in the first stage with a standard fragment shader
technique for doing image processing on the GPU [19].

More precisely, the edge detection is done with a 3 × 3
Laplacian-like adaptive filter that considers the t1 direction.
This filter gives more weight to the pixels that are more
aligned with the t1 direction. The t1 direction is quantized
into one of four main directions and the filter is set for the
chosen direction (see Figure 4). The filter is weighted by a
λ parameter that controls how sensitive the filter is to the
θ direction. When λ = 0, the filter ignores the t1 direction
and becomes a Laplacian filter.

At the end of the process, the filtered value of the curvature
is used as an apparent ridge intensity, which we use as a
gray-scale pixel value. This produces a line fading effect,
similar to the one used in object-space methods of suggestive
contours and apparent ridges. We invert the color intensity
to produce “black on white” effect, otherwise we would
have “white on black”. The fading effect can be avoided
by setting the pixel value to black when intensity is higher
than a minimum threshold (see Figure 5). Low values are
clamped to avoid noise artifacts produced by the filter. High
λ values are more sensitive to noise and may require a higher
clamping value.

Figure 5. Results with (left) and without (right) the fading effect.



Figure 6. Our results (bottom) on some models along with shaded views (top) for comparison.

V. RESULTS

We now present some of our method’s results, discuss
the effects of varying our method’s parameters (τ and λ),
and compare our results side-by-side with the ones obtained
with the original method by Judd et al. [11] in terms of
image quality and performance. Apparent ridges can depict
complex models with very few lines in a clean way. Our
results exhibit nice line drawings that capture most of the
geometric features of the model. This can be seen comparing
each drawing with its respective shaded view (see Figure 6).

A. Parameter variation

To fine-tune the results of our method, one can manipulate
the parameters τ and λ to achieve maximum quality.

Figure 7 shows the results of our method for the cow
model when τ varies linearly from −9.9 to −2.4. Note how
higher τ values give more detailed apparent ridges. However,
too high τ values promote loss of precision and the lower
maxima are rounded to zero (see the rightmost cow).

Setting λ to a low value such as 2 or 3 usually produces
good results for most models. However, because the maxima
estimation is performed at the pixel level, some features may
be harder to capture when the projected faces of the mesh are
much larger than the pixel. Such large faces produce large
areas of interpolated curvature. To overcome this problem,
higher values of λ can be set. Figure 8 shows the effect of
varying λ. Note how the Laplacian filter, chosen by setting
λ = 0, detects most of the apparent ridges, but not the main
top ridge. Higher λ values capture this feature and produce
sharper apparent ridges.

B. Image comparison

We compared the results of Judd’s method with ours
for several models (see Figures 9–11) using the following
methodology: given a model, we chose an appropriate
threshold for Judd’s method; then, we chose our method’s

Figure 7. Variation of τ = −9.9, −7.4, −4.9, −2.4, from left to right:
scaled view-dependent curvature maps (top) and apparent ridges (bottom).

Figure 8. Variation of λ = 0.0, 1.5, 3.0, 4.5, from left to right.

parameters (τ and λ) so that the resulting image was visually
as close as possible to the one produced by Judd’s method.

As it can be seen, our method produces images that are
quite similar to the ones produced by Judd’s method; apparent
ridge lines appear generally in the same places. In some cases,
it is very hard to notice the slight differences with bare eyes
(especially in a printed version); image closeups reveal pixel-
level differences due to the nature of the estimation. In the
original method, 3D lines are extracted on the mesh and then
rasterized with an arbitrary line size. Our method performs
edge detection on the rasterized view-dependent curvature.



Judd’s method Our method

Figure 9. Comparison for armadillo, brain, bunny, column, cow.

Judd’s method Our method

Figure 10. Comparison for elephant, golfball, heptoroid, hippo, horse.



Judd’s method Our method

Figure 11. Comparison for igea, lucy, maxplanck, roundedcube, tablecloth.

While the images produced by both methods are equally
pleasant, we find ours a little sharper due to the pixel-level
estimation, especially for more detailed models. However,
for images where the projected face size is much larger than
the pixel size, the image quality is worse. In these cases,
the excessive interpolation of q1 and t1 may produce visual
artifacts (see the rounded cube in Figure 11). In general, our
method works well for larger models and these artifacts can
be eliminated by mesh subdivision if desired.

C. Performance comparison

In the original, object-space approach by Judd et al. [11],
apparent ridges tend to be slower to compute than other
lines because they rely on the view-dependent curvature
and its derivative, which must be recomputed every time
the viewpoint changes. As we shall see now, our method
improves the performance of apparent ridges, leading them
to be competitive in speed with other feature lines, with all
its visual advantages.

The main code was written in C++ using the trimesh2
library [18]. The shaders were written in GLSL [19]. The
original apparent ridges code from rtsc [20] was adapted
to run inside our program for side-by-side and performance
comparisons. The vertex shader was also based on code
from rtsc. The 3D mesh models were collected from the
internet [20], [21]. All images are 800×800.

We performed our experiments on two computers: an
ordinary laptop with a regular graphics card and a high-end
workstation with a powerful graphics card. The laptop had an
AMD Turion X2 processor with a 512MB NVidia GeForce
8200M card. The workstation had a dual AMD Opteron
processor with a 1.5GB NVidia Quadro FX 5600 card. Both
cards have GPU support for vertex and fragment shaders.

The results in Table I show that our method provides
significant speedups, except for the smallest model on the
laptop (however, the frame rate is still high). In the laptop
results, we see that our method performs better for larger
models. Indeed, the speedups between the methods grow with
the mesh size. Another way of interpreting this result is that
the impact of the mesh size is different for the methods, and
our method takes advantage of the graphics card to minimize
this impact. In the workstation results, our method performs
better both in absolute frame rate and relative speedup to
Judd’s method. However, it is not possible to see a clear
tendency of speedup growth with the mesh size. Since Judd’s
method is CPU-based, we expected that it would be faster on
the workstation. Although this indeed occurs, the frame rates
of the larger models are almost the same. These results show
that CPU-based solutions may not take much advantage of
expensive hardware.

Overall, we find that the results are very encouraging
and show that GPU-based solutions for line extraction may
be a good choice when performance matters, such as NPR
rendered games.



laptop workstation
model vertices J O O/J J O O/J
roundedcube 1538 202 90 0.5 600 1100 1.8
tablecloth 22653 32 64 2.0 32 160 5.0
hippo 23105 41 66 1.6 42 160 3.8
cow 46433 24 58 2.4 23 198 8.6
horse 48484 22 52 2.4 26 147 5.6
maxplanck 49132 20 46 2.3 22 90 4.1
bunny 72027 15 42 2.8 16 102 6.4
elephant 78792 14 47 3.4 15 113 7.5
golfball 122882 9 30 3.3 9 52 5.8
igea 134345 8 29 3.6 8 58 7.3
armadillo 172974 5 18 3.6 5 30 6.0
column 262653 3 9 3.0 3 15 5.0
lucy 262909 4 13 3.3 4 26 6.5
heptoroid 286678 4 21 5.3 5 19 3.8
brain 294012 4 20 5.0 4 34 8.5

Table I
PERFORMANCE IN FRAMES PER SECOND (FPS).

J = JUDD’S METHOD, O = OUR METHOD, O/J = SPEEDUP.

VI. CONCLUSION

Apparent ridges are perceptually pleasant and also visually
competitive with other lines like suggestive contours by
depicting the same features in a clear and smooth way, in-
cluding convex features. However, apparent ridges are slower
to compute since they depend on high-order derivatives of the
view-dependent curvature, which change with the viewpoint.

Our method is faster because it replaces the computation
of the view-dependent curvature in object space with a simple
edge detection in image space, while providing similar image
quality. The performance of this stage does not depend on
the mesh size, only on the image size. With this improved
performance, apparent ridges become even more competitive.

As future work, we intend to experiment with some
techniques to improve image quality, such as avoiding
direction quantization via sub-pixel sampling, using better
filters and a Phong-like shading of the view-dependent
curvature.

The image-space stage of our method can be used as part
of a pipeline to extract apparent ridges from volume data
and implicit models. One would just need to extract the
view-dependent curvature from the isosurfaces and rasterize
it to an off-screen buffer.

Our method can also be adapted to extract other lines,
like suggestive contours. Properties like the radial curvature
and its derivative would be rasterized to an off-screen buffer
where appropriate screen operations would be applied to find
them. We intend to investigate how to remove object space
computations completely.

Finally, we would like to explore the use of the view-
dependent curvature for shading and modeling.

Acknowledgments: This work is part of the first author’s M.Sc.
work at IMPA. The second author is partially supported by CNPq.
This work was done in the Visgraf laboratory at IMPA, which is
sponsored by CNPq, FAPERJ, FINEP, and IBM Brasil.

REFERENCES

[1] B. Gooch and A. Gooch, Non-Photorealistic Rendering.
A K Peters, 2001.

[2] T. Strothotte and S. Schlechtweg, Non-Photorealistic Computer
Graphics: Modeling, Rendering, and Animation. Morgan
Kaufmann, 2002.

[3] J. J. Koenderink, A. J. van Doorn, C. Christou, and J. S. Lappin,
“Shape constancy in pictorial relief,” Perception, vol. 25, no. 2,
pp. 155–164, 1996.

[4] M. C. Sousa and P. Prusinkiewicz, “A few good lines:
suggestive drawing of 3d models,” Computer Graphics Forum,
vol. 22, no. 3, pp. 327–340, 2003.

[5] F. Cole, A. Golovinskiy, A. Limpaecher, H. S. Barros,
A. Finkelstein, T. Funkhouser, and S. Rusinkiewicz, “Where
do people draw lines?” ACM Trans. Graph., vol. 27, no. 3,
pp. 1–11, 2008.

[6] F. Cole, K. Sanik, D. DeCarlo, A. Finkelstein, T. Funkhouser,
S. Rusinkiewicz, and M. Singh, “How well do line drawings
depict shape?” ACM Trans. Graph., vol. 28, no. 3, pp. 1–9,
2009.

[7] A. Hertzmann, “Introduction to 3d non-photorealistic render-
ing,” in Non-Photorealistic Rendering (SIGGRAPH 99 Course
Notes). ACM, 1999, pp. 7-1–7-14.

[8] D. DeCarlo, A. Finkelstein, S. Rusinkiewicz, and A. San-
tella, “Suggestive contours for conveying shape,” in ACM
SIGGRAPH 2003, pp. 848–855.

[9] K. Na, M. Jung, J. Lee, and C. G. Song, “Redeeming valleys
and ridges for line-drawing,” in PCM 2005, Lecture Notes in
Computer Science 3767. Springer, 2005, pp. 327–338.

[10] D. DeCarlo and S. Rusinkiewicz, “Highlight lines for convey-
ing shape,” in NPAR ’07. ACM, 2007, pp. 63–70.

[11] T. Judd, F. Durand, and E. Adelson, “Apparent ridges for line
drawing,” ACM Trans. Graph., vol. 26, no. 3, p. 19, 2007.

[12] T. Isenberg, B. Freudenberg, N. Halper, S. Schlechtweg, and
T. Strothotte, “A developer’s guide to silhouette algorithms
for polygonal models,” IEEE Computer Graphics and Appli-
cations, vol. 23, pp. 28–37, 2003.

[13] J. J. Koenderink, Solid Shape. MIT Press, 1990.
[14] V. Interrante, H. Fuchs, and S. Pizer, “Enhancing transparent

skin surfaces with ridge and valley lines,” in Visualization ’95.
IEEE Computer Society, 1995, pp. 52–59.

[15] D. DeCarlo, A. Finkelstein, and S. Rusinkiewicz, “Interactive
rendering of suggestive contours with temporal coherence,” in
NPAR ’04. ACM, 2004, pp. 15–145.

[16] Y. Lee, L. Markosian, S. Lee, and J. F. Hughes, “Line drawings
via abstracted shading,” in ACM SIGGRAPH ’07, p. 18.

[17] S. Rusinkiewicz, “Estimating curvatures and their derivatives
on triangle meshes,” in 3DPVT ’04. IEEE Computer Society,
2004, pp. 486–493.

[18] ——, “trimesh2 library,” 2009, http://www.cs.princeton.edu/
gfx/proj/trimesh2/.

[19] R. Wright, B. Lipchak, and N. Haemel, OpenGL Superbible,
4th ed. Addison-Wesley Professional, 2007.

[20] “Suggestive contours,” http://www.cs.princeton.edu/gfx/proj/
sugcon/.

[21] “Apparent ridges for line drawings,” http://people.csail.mit.
edu/tjudd/apparentridges.html.


