
Computers & Graphics (2024)

Contents lists available at ScienceDirect

Computers & Graphics

journal homepage: www.elsevier.com/locate/cag

A vertex-centric representation for adaptive diamond-kite meshes

Luiz Henrique de Figueiredo

IMPA, Rio de Janeiro, Brazil

A R T I C L E I N F O

Article history:
Received February 5, 2024
Revised March 14, 2024
Final version March 20, 2024

Keywords: mesh representation, geomet-
ric modeling, data structures

A B S T R A C T

We describe a concise representation for adaptive diamond-kite meshes based solely on
the vertices and their stars. The representation is exact because it uses only integers, is
much smaller than standard topological data structures, and is highly compressible. All
topological elements are reconstructed in expected constant time per element.

© 2024 Elsevier B.V. All rights reserved.

1. Introduction

Quadrilateral meshes have advantages over triangle meshes
in several applications, including modeling, texturing, and
physically-based simulations, where their numerical properties
lead to more accurate and faster results. Moreover, high-quality
quadrilateral meshes produce even better results [1].

Eppstein [5] described adaptive diamond-kite meshes, a fam-
ily of planar quadrilateral meshes that can be refined recursively
using local subdivision operations and are based solely on two
kinds of quadrilaterals: diamonds, rhombi with 60° and 120°
angles, and kites with 60°, 90°, and 120° angles. Adaptive
diamond-kite meshes have several properties that are useful in
applications, such as using faces of bounded aspect ratio and
being invariant under Laplacian smoothing [5]. Fig. 1 shows an
adaptive diamond-kite mesh refined around an implicit curve.

The rigid geometry and topology of adaptive diamond-kite
meshes suggest that they should admit computational represen-
tations that are more concise than explicitly listing all vertices,
edges, and faces of the mesh and their adjacency relationships,
as in standard topological data structures [3]. As far as we know,
there are no specialized representations for adaptive diamond-
kite meshes in the literature, despite their potential in appli-
cations. In fact, specialized representations for quadrilateral
meshes are rare: previous work on mesh representations either
targets general meshes or specializes to triangle meshes [3].
There has been some work on compression of quadrilateral
meshes [10, 4], on compact representations of general embed-
ded planar graphs [11, 8], and on representations based on vertex

Fig. 1. An adaptive diamond-kite mesh refined around an implicit curve.
The faces are colored according to their refinement depth.

stars for planar meshes [9] and for general cell complexes [7].
In this paper, we describe in detail a concise representation for

adaptive diamond-kite meshes based solely on the vertices and
their stars. It is inspired by a recent vertex-centric representation
for periodic tilings of the plane by regular polygons [12]. Our
representation is: exact, because it uses integers for both the
geometry and the topology; concise, much smaller than standard
topological data structures; and geometrically meaningful in that
it replaces explicit adjacency relations with a concise description
of vertex stars. Storing the vertices in a hash table allows the
reconstruction of the edges and faces adjacent to a vertex in
expected constant time and so the reconstruction of the mesh in
expected linear time. Our code is publicly available [2].

http://www.sciencedirect.com
http://www.elsevier.com/locate/cag
https://orcid.org/0000-0001-5683-693X

2 preprint accepted for publication / Computers & Graphics (2024)

2. Adaptive diamond-kite meshes

We recall now the main concepts of adaptive diamond-kite
meshes: their geometry and topology and the local subdivision
operation. For further details, see the paper by Eppstein [5]. The
main goal here is to lay down the basis of our representation:
a complete geometric description of the stars of the internal
vertices of the mesh. We shall discuss boundary vertices later.

Base mesh. An adaptive diamond-kite mesh starts with a base
mesh: a finite rhombille tiling formed by subdividing a hexag-
onal tiling using three diamonds per hexagon (see Fig. 2). The
base mesh has only diamonds; kites appear during refinement.
In applications, a suitable base mesh is obtained by applying
a similarity transformation to the standard base mesh: the one
having edges of unit length and horizontal hexagons, as in Fig. 2.
For concreteness, and without loss of generality, we focus here
on that standard base mesh.

→

Fig. 2. The base mesh (right) is a finite rhombille tiling formed by subdivid-
ing a hexagonal tiling (left) using three diamonds per hexagon.

Faces. By definition, diamond-kite meshes have only two kinds
of faces: diamonds, rhombi with 60° and 120° angles, and kites,
with 60°, 90°, and 120° angles (see Fig. 3). A diamond has all
sides of the same length. A kite has sides of length L and ρL,
where ρ = tan(30◦) = 1√

3
≈ 0.577.

60 120

60120

60 90

120

90

Fig. 3. The faces in diamond-kite meshes: diamonds (left) and kites (right).

Fig. 4. A kite fits inside a diamond (left); a diamond fits inside a kite (right).

Diamonds and kites fit well together. As shown in Fig. 4,
a diamond contains a kite: divide the diamond along its shortest
diagonal into two equilateral triangles and take the barycenter
of one triangle as the 120°-angle vertex of the kite. Similarly,
a kite contains a smaller diamond: divide the kite along its
shortest diagonal into two triangles and take the barycenter of
the equilateral triangle as the other 120°-angle vertex of the

diamond. These constructions support the recursive refinement
of adaptive diamond-kite meshes, as we shall see presently.

Degrees. Since the smallest face angle is 60°, the maximum
vertex degree in a diamond-kite mesh is 6. Since the largest
face angle is 120°, the minimum vertex degree is 3. Adaptive
diamond-kite meshes have vertices of all degrees between 3
and 6. The base mesh has only vertices of degree 3 and 6;
vertices of degree 4 and 5 appear during refinement. (Recall that
we focus here on internal vertices.) We exploit this narrow range
of degrees in our representation.

Refinement. Adaptive meshes evolve by recursively apply-
ing topological refinement procedures to elements selected by
application-specific refinement criteria. In adaptive diamond-
kite meshes, refinement is applied to selected vertices of degree 6
using the local subdivision operation detailed below. Eppstein
[5] also proposed a prerequisite structure of replacement opera-
tions that ensures smooth transitions during refinement so that
adjacent faces differ by at most one level of refinement, as in
restricted or balanced quadtrees [13] (see Fig. 1).

Subdivision. The main step for refining adaptive diamond-kite
meshes is a local subdivision operation that subdivides and
remeshes the faces around a selected central vertex of degree 6,
as illustrated in Fig. 5. The mesh is unaffected outside these
faces. Six new vertices (in green) are created at the barycenter
of each equilateral triangle defined by the central vertex (in
black) and two consecutive adjacent vertices (in red). The old
adjacent vertices and the new vertices are then combined into six
congruent diamonds (in red) around the central vertex. The new
vertices become adjacent vertices and the old vertices become
opposite vertices. From the perspective of the original opposite
vertices (in blue), the original faces (in gray) are replaced by
quadrilaterals (in blue) that switch types: diamonds become
smaller kites and kites become smaller diamonds, as in Fig. 4.
The mesh resulting after a local subdivision operation is thus still
a diamond-kite mesh. The new edges around the central vertex
are rotated 30° with respect to the original edges. These new
central edges have length ρL, where ρ is the ratio between the
sides of a kite and L is the length of the original central edges.

→

Fig. 5. The local subdivision operation in adaptive diamond-kite meshes.
The six faces around a vertex of degree 6 (left) are subdivided and remeshed
into twelve new faces (right). The new central faces are all diamonds. The
original faces can be any combination of diamonds and kites.

Stars. In general meshes, the star of a vertex is the set of all
topological elements adjacent to it. We adopt a simpler definition
here: the star of a vertex is the circular sequence of vertices that

preprint accepted for publication / Computers & Graphics (2024) 3

are adjacent to it. Diamond-kite meshes have rigid geometry
because they have only two kinds of faces. Rigid geometry
implies rigid topology. In particular, the possible vertex stars are
restricted to a small set. Indeed, the distribution of angles around
a vertex is constrained by the integer solutions of the equation
60x+90y+120z = 360, resulting in 11 possible arrangements
of angles up to cyclic permutations (see Table 1). Moreover, the
angles around a vertex determine its adjacent vertices up to scale:
edges making angles of 60° or 120° have the same length; edges
making angles of 90° have lengths whose ratio is ρ (see Fig. 3).
These facts already suggest that diamond-kite meshes admit
concise vertex-centric representations based on stars, the central
idea in our representation. Adaptive diamond-kite meshes are
even more severely constrained: the only possible arrangements
of angles around a vertex are those shown in Fig. 6, exactly one
for each degree. This is an important consequence of how the
local subdivision operations works [5]. Thus, there is exactly
one possible star for each degree, up to orientation and scale.
This rigidity is the key for the conciseness of our representation.

x y z degree arrangements of angles

0 0 3 3 ccc
0 4 0 4 bbbb
1 2 1 4 abbc abcb acbb
2 0 2 4 aacc acac
3 2 0 5 aaabb aabab
4 0 1 5 aaaac
6 0 0 6 aaaaaa

Table 1. The integer solutions of 60x+ 90y+ 120z = 360 give 11 possible
arrangements of angles around a vertex in a diamond-kite mesh. These
arrangements are coded with a = 60°, b = 90°, c = 120°. Only ccc, abcb,
aaabb, aaaaaa occur in adaptive diamond-kite meshes; see Fig. 6.

Fig. 6. Top: The possible arrangements of angles around a vertex in adaptive
diamond-kite meshes. They are coded ccc, abcb, aaabb, aaaaaa in Table 1.
Bottom: The only vertex stars for each degree, up to orientation and scale.

3. Background and inspiration

A representation for a polygonal mesh has two main compo-
nents: geometry and topology. Because the faces are polygons,
the edges are straight, and so all geometry is concentrated on the
vertices, which are represented by suitable coordinates, typically
Cartesian coordinates. The topology records selected adjacency
relations between the vertices, edges, and faces of the mesh.

0

1

2
3

4

5

6

7

8
9

10

11

Vertices as integer linear combinations of basic directions

! + !10 + !11 + !0 + ! + !2 + !3 = !11 + !10 + !3 + !2 + 2! + 1

= V � O

Fig. 7. Left: The twelve basic directions are given by ωk for k = 0, . . .11.
Right: Every vertex in a tiling of the plane by regular polygons can be
reached by following a path from the origin along the edges of the tiling and
so are given by integer polynomial expressions in ω (from [12]).

The art in representing meshes is choosing a subset of those
adjacency relations such that all others are easily deduced from
that subset [3]. In general meshes, a vertex can belong to several
faces and a face can have several vertices. Therefore, standard
representations for general meshes focus on the edges because
they have exactly two adjacent vertices and at most two adja-
cent faces. Triangle and quadrilateral meshes are more rigid
and admit representations based on faces and vertices. Tilings
by regular polygons are even more rigid and admit representa-
tions based solely on vertices. Our representation for adaptive
diamond-kite meshes is inspired by a recent concise vertex-
centric representation for periodic tilings of the plane by regular
polygons [12]. We briefly outline here the two features of that
representation that are relevant to us: the choice of coordinates
for the vertices and a data structure for storing them.

To describe the geometry of a tiling of the plane by regular
polygons, one needs to give coordinates to its vertices. Complex
numbers provide a rich and convenient framework for that task.
First, scale and rotate the tiling so that all edges have unit length
and are aligned with 12 basic directions given naturally by the
12th roots of unity in the complex plane (see Fig. 7). The basic
directions are the powers of ω , where ω = exp(2πi

12) =
√

3+i
2 is

the principal 12th root of unity. Next, translate the tiling so that
the origin is at a vertex. Then, every vertex can be reached by
following a path from the origin along the edges of the tiling (see
Fig. 7). Since the edges have unit length and are aligned with
the powers of ω , these paths are given by integer polynomial
expressions in ω of degree less than 12. Therefore, every vertex
has a representation in the ring of cyclotomic integers Z[ω], the
set of all integer polynomial expressions in ω . These expressions
can be reduced to a unique canonical form of degree at most 3
because ω4 =ω2−1. Thus, every vertex can be written uniquely
as a0 +a1ω +a2ω2 +a3ω3, with ai ∈ Z. We say that the vertex
has lattice coordinates [a0,a1,a2,a3]. Finally, store the vertices
of the tiling in a hash table, named the cloud, using their lattice
coordinates as keys. The main feature of the cloud is that one can
test whether a vertex exists at a given point in expected constant
time. This allows the reconstruction of all vertices, edges, and
faces around a given vertex in expected constant time [12].

For describing the topology of the tiling, the key observation is
that the vertices adjacent to a given vertex are exactly its nearest
neighbors, found at unit distance along the basic directions.
By probing the cloud at these 12 locations, those vertices can
be found in circular order in expected constant time, without
explicit knowledge about the star of the vertex. More precisely,

4 preprint accepted for publication / Computers & Graphics (2024)

to find the vertices adjacent to a vertex v, check whether v+ωk is
in the cloud for k = 0, . . . ,11. The lattice coordinates of v+ωk,
needed for querying the cloud, are easily computed from those
of v and ωk. Thus, that representation for tilings stores no edges
or faces nor their topological relations because they can all be
readily deduced from the geometry of the vertices [12].

In summary, the representation for tilings [12] introduced
lattice coordinates for vertices and the cloud for storing them.
Both are key features for exact and efficient reconstruction of the
tilings. In our representation of adaptive diamond-kite meshes,
we retain the cloud for storing the vertices but we modify their
lattice coordinates to reflect mesh refinement. We also provide
each vertex with data to allow the reconstruction of its star.

4. Our representation

We exploit the rigidity of adaptive diamond-kite meshes to
design a representation that is based solely on the vertices and
their stars. The rigidity is the fact that there is exactly one possi-
ble star for each degree, up to orientation and scale (see Fig. 6).
Thus, in our representation we store, for each vertex in the mesh,
its modified lattice coordinates and the type, orientation, and
scale of its star. This data directly represents the geometry of the
mesh and indirectly represents its topology. Here are the details.

Base mesh. The vertices of the base mesh belong to an equilat-
eral triangular mesh, a tiling of the plane by regular polygons,
and so can be given lattice coordinates. Moreover, the edges of
the base mesh are aligned with the 6 basic directions given by
the powers of ω2. Therefore, the coefficients of ω and ω3 in
the lattice coordinates are always zero and so the vertices can
be represented in the simpler set Z[ω2] = {a+bω2 : a,b ∈ Z}.
The coordinates [a,b] for a vertex v = a+bω2 of the base mesh
are still called its lattice coordinates. We now generalize those
coordinates for the vertices created during refinement.

3-adic lattice coordinates. The only geometric operation used
in refinement is the computation of barycenters of triangles
to create new vertices in the local subdivision operation. The
barycenter of a triangle uvw is given by 1

3 (u+v+w). Therefore,
every vertex in the mesh can be represented as 1

3m (a+ bω2),
where a,b,m are integers with m ≥ 0. We say that the vertex has
rational 3-adic lattice coordinates [a,b,m]; this is the geometric
data attached to the vertex. The division by a power of 3 reflects
the repeated computation of barycenters in the local subdivision
operations. We call m the depth of the vertex: it is essentially
the refinement depth at which the vertex is created and it does
not change when the mesh is refined. The vertices of the base
mesh have depth 0. To avoid ambiguities, especially when
indexing the cloud, we use normalized 3-adic lattice coordinates
by eliminating all common factors of 3 in a and b when m > 0,
and adjusting m accordingly.

Topology. The vertices adjacent to a given vertex lie along the
basic directions, but they are not necessarily its nearest neigh-
bors, even when they are all at the same distance. For instance,
in the standard base mesh every internal vertex has 6 nearest
neighbors but not all internal vertices have degree 6, many have

v a b m d k n

• 0 0 0 3 0 0

• 0 1 0 4 6 0

• 2 5 1 5 9 1

• 0 2 0 6 1 3

• 2 0 0 0 0 0

Fig. 8. Our representation of some vertices and theirs stars. Their geometry
is given by 3-adic lattice coordinates [a,b,m] and their topology is given by
their degree d, and the orientation k and level n of their stars.

degree 3; also, the internal vertices of degree 3 fall into two
classes where their stars differ by a rotation of 60°. Moreover,
in refined meshes, the vertices adjacent to a vertex of degree 4
or 5 lie at different distances (see Fig. 6). Nevertheless, we can
avoid listing adjacent vertices explicitly because there is exactly
one possible star for each degree, up to orientation and scale.

Standard stars. For concreteness and convenience, we define
standard stars for each degree in all 12 orientations, which we
denote by star(d,k), where d is the degree and k is the orienta-
tion. Fig. 6 (bottom) defines star(d,0), the standard stars of each
degree at orientation 0. Then star(d,k) is obtained by rotating
star(d,0) by 30k degrees around its central vertex. The orien-
tation of the star of each vertex in the mesh is determined with
respect to the standard star of the same degree.

Stars. The topological data attached to each vertex is the type,
orientation, and scale of its star. The type is determined by its
degree d (see Fig. 6). The orientation is the integer k between 0
and 11 such that its star is completely aligned with star(d,k),
except for scale. The scale is given by the level of the vertex. The
level gives the length of the longest edge around the vertex: if
the level is n, then the longest edge has length Ln = ρnL0, where
L0 is the length of the edges in the base mesh. (By definition,
L0 = 1 in the standard base mesh.) All edges around a vertex
of level n have length either Ln or Ln+1 = ρLn (see Fig. 6). The
vertices of the base mesh are at level 0. The level of a vertex can
increase when the mesh is refined.

Boundary vertices. The restricted stars shown in Fig. 6 only
apply to internal vertices. The stars of boundary vertices have
different restrictions that depend on the shape of the base mesh.
To avoid this complication, we represent only the geometry
of boundary vertices using their lattice coordinates, artificially
giving them degree 0. We assume that every boundary vertex of
the base mesh belongs to a face having an internal vertex. Then,
the edges and faces adjacent to boundary vertices are implied by
those of the internal vertices adjacent to them. The assumption
on boundary vertices reflects a limitation of adaptive diamond-
kite meshes: they need a base mesh with many internal vertices
so that the refinement can advance. Except for that restriction,
the base mesh may have multiple components and holes.

Abstract, internal, and external representations. Abstractly, our
representation is a set of records ⟨a,b,m,d,k,n⟩, one for each

preprint accepted for publication / Computers & Graphics (2024) 5

vertex of the mesh, giving their geometry by 3-adic lattice co-
ordinates [a,b,m], and their topology by their degree d, and the
orientation k and level n of their stars (see Fig. 8). Concretely,
this abstract representation is supported by a suitable data struc-
ture, which we call an internal representation. We have found it
very convenient to use the cloud, a hash table that stores vertices
indexed by their normalized lattice coordinates [12]. We assume
that the cloud answers queries in expected constant time; the
details of hashing are otherwise unimportant. Our representation
can easily be saved to a file as a list of records, in a suitable
format. We call this an external representation. Standard CSV
files are convenient text files that are easy to save, load, inspect,
and share, but ad-hoc binary files can be used if reduced space or
speed of loading are essential. External representations record
the complete data required to rebuild an internal representation:
no post-processing is needed. Standard mesh formats, such
as OBJ and OFF, require extensive post-processing to rebuild
a topological data structure. Below, we propose two variants
for external representation: a reduced representation that takes
about half the size of the full representation and a normalized
representation that is useful for comparing models.

Reduced representation. Our representation is already compact:
it represents only the vertices — no edges, no faces, no adja-
cency relations. Nevertheless, there is room for improvement
because the edges are implicitly represented twice in vertex stars.
Therefore, every internal vertex and its star can be reconstructed
from its neighbors and their stars. Thus, each individual ver-
tex is redundant and need not be represented, and so can be
removed. However, we cannot remove too many vertices be-
cause the remaining vertices should enable the reconstruction
of all redundant vertices and their stars. Finding the best set of
redundant vertices to remove is probably a hard mesh decima-
tion problem related to the minimum vertex cover problem in
graphs, a classical optimization problem that is NP-hard. How-
ever, we do not need to find the best set of redundant vertices:
the vertices of degree 3 are by far the most frequent vertices,
comprising about half of all vertices (see Table 2, top). Indeed,
since each local subdivision operation generates six new vertices
of degree 3 adjacent to a vertex of degree 6 (Fig. 5), we expect
that the vertices of degree 3 at the highest refinement depth to be
the most numerous (see Table 2, bottom). Moreover, virtually
all vertices of degree 3 are adjacent to a vertex of degree 6 and
so are easily reconstruted (see the details in §5). In conclusion,
we can remove every vertex of degree 3 that is adjacent to a
vertex of degree 6. (In the mesh in Fig. 1, these are all but two.)
Removing those redundant vertices gives an external reduced
representation that is about half the size of the full representation
(see §6 for further discussion and precise statistics). The internal
representation remains the same, storing all vertices, because all
redundant vertices are reconstructed when the external reduced
representation is loaded.

Normalized representation. Our representation is not unique,
but merely for trivial reasons, as in many representation schemes.
A vertex can be given different 3-adic lattice coordinates [a,b,m]
if we allow common factors of 3 in a and b. Normalized 3-adic

degree 0 3 4 5 6 total
count 66 1853 485 475 680 3559

% 1 52* 13 13 19 100

level 0 1 2 3 4 5 6 total
count 58 26 47 45 87 288 1302 1853

% 3 1 3 2 5 16 70* 100

Table 2. Distribution of vertex degrees (top) and of vertices of degree 3 by
refinement depth (bottom) for the mesh in Fig. 1. Vertices of degree 0 are
boundary vertices. Vertices of degree 3 are by far the most frequent vertices.
Vertices of degree 3 at the highest refinement depth are the most numerous.

lattice coordinates restore uniqueness in the geometry. The ori-
entation of the stars of vertices of degree 3 and 6 is not uniquely
determined because those stars have rotational symmetry (see
Fig. 6). Uniqueness in the topology is restored by using normal-
ized orientations: in {0,1,2,3} for degree 3 and in {0,1} for
degree 6 (that is, k mod 4 for degree 3 and k mod 2 for degree 6).
The last source of non-uniqueness is trivial: vertices can be listed
in arbitrary order. Sorting the external representation restores
uniqueness. A sorted external representation with normalized
lattice coordinates and normalized star orientations is called a
normalized external representation. Our representation scheme
does not require normalized representations because we normal-
ize lattice coordinates before indexing the cloud. Nevertheless,
normalized representations are useful for archiving and for com-
paring models. Indeed, two representations are equivalent when
they define the same mesh and this happens exactly when their
normalized external representations are the same.

5. Using the representation

Having described our representation, we now explain how
to use it, that is, how to create a representation for the base
mesh, how to update the representation during refinement, how
to reconstruct the edges and faces of the mesh from the rep-
resentation, and how to convert it to standard representations.
Updating the representation and reconstructing the mesh require
complete information about the stars of the vertices, the focus of
our representation.

Representing the base mesh. A simple way to create the base
mesh is to create the vertices at the center of the hexagons and
then the vertices around each center along the 6 basic directions
given by the powers of ω2. This is easily done using lattice coor-
dinates. Indeed, if c is the center of an hexagon, then the vertices
around it are wk = c+ωk for k = 0,2,4,6,8,10. The center c
has degree 3 and its star has orientation 0. The vertices wk for
k = 0,4,8 have degree 6 and orientation 0; the vertices wk for
k = 2,6,10 have degree 3 and orientation 2 (see Fig. 2). To make
a grid of hexagons, note that c+ω2 +ω4 and c+1+ω2 are the
centers of two adjacent hexagons (see Fig. 9).

Standard stars. For convenience, we precompute the standard
stars. Fig. 10 shows star(d,0) for each degree d; they are cen-
tered at the origin and at level 0. Table 3 gives the lattice coordi-
nates of all vertices in these stars. We compute star(d,1) from
star(d,0) by multiplying its vertices by ρω = 1

3 (1+ω2), the

6 preprint accepted for publication / Computers & Graphics (2024)

Fig. 9. Making a grid of hexagons for the base mesh. If c (black) is the center
of an hexagon, then so are c+ω2 +ω4 (blue) and c+1+ω2 (red).

Fig. 10. Standard stars of each degree at orientation 0 as templates for
reconstructing edges and faces around a vertex. Adjacent vertices shown
in black, first opposite vertices in orange, second opposite vertices in green.
Lattice coordinates for all vertices are given in Table 3.

barycenter of the triangle defined by the origin, 1, and ω2. This
reflects the effect of the local subdivision step on central edges:
a rotation by 30° combined with a scaling by ρ . For k ≥ 2, we
compute star(d,k) from star(d,k−2) by multiplying its vertices
by ω2, a rotation by 60°. These computations are easily done in
lattice coordinates using the fact that ω4 = ω2 −1.

Finding vertex stars. The standard stars are templates for all
stars: the star of a vertex v of degree d and orientation k is
found by scaling star(d,k) to the level of v and translating it
to v. These operations are performed in lattice coordinates.
More precisely, if v = [a,b,m], then for each vertex [a′,b′,m′] of
star(d,k), the corresponding vertex w of the star of v is given by
w = [a,b,m]+ [a′,b′,m′+⌊n/2⌋], where n is the level of v. This
is essentially adding fractions. The term ⌊n/2⌋ reflects the fact
that it takes two subdivisions to scale a star by ρ2 = 1

3 . Normal-
ization of lattice coordinates is important here (and elsewhere):
computing the lattice coordinates of w may involve fractions
with greater denominators than those present in w (for instance,
when v is at level n ≥ 2 and w has depth 0). Hence the need for
simplification.

Updating the representation. In each local subdivision opera-
tion (Fig. 5), we create new adjacent vertices and give the right
orientation and scale to their stars, and we update the stars of the
central vertex and of the old adjacent vertices, which become
new opposite vertices. The old opposite vertices are not touched.
Boundary vertices are never touched because they remain bound-
ary vertices and have no topological data to update. In what
follows, all orientations are computed modulo 12.

Consider a local subdivision operation on a central vertex v
having level n and orientation k. After the subdivision, v has
a new level and a new orientation; its degree remains 6. The
new level of v is n+1, because the new central edges are scaled
by ρ . The new orientation of v is k+1, because the new star is
rotated 30° with respect to the old star. The new star of v can

degree adjacent opposite1 opposite2

[1,0,0] [0,1,0] [0,2,0]
3 [−1,1,0] [−1,0,0] [−2,0,0]

[0,−1,0] [1,−1,0] [2,−2,0]
[1,0,0] [0,1,0] [0,2,0]

4 [−1,1,0] [−1,0,0]
[−1,−1,1] [0,−2,1] [0,−1,0]
[1,−2,1] [1,−1,0]
[1,0,0] [0,1,0]

5 [−1,2,1] [−2,2,1] [−1,1,0]
[−2,1,1] [−2,0,1] [−1,0,0]

[−1,−1,1] [0,−2,1] [0,−1,0]
[1,−2,1] [1,−1,0]
[1,0,0] [2,2,1] [1,1,0]

6 [0,1,0] [−2,4,1] [−1,2,0]
[−1,1,0] [−4,2,1] [−2,1,0]
[−1,0,0] [−2,−2,1] [−1,−1,0]
[0,−1,0] [2,−4,1] [1,−2,0]
[1,−1,0] [4,−2,1] [2,−1,0]

Table 3. Lattice coordinates of the templates shown in Fig. 10. Standard
stars are centered at the origin and at level 0.

Fig. 11. Updating the orientation of the star of an old adjacent vertex u
(white). Its old star in shown in black and its new star in red. The black
edge joins u to the central vertex v in the old star of u. The orientation of u
is updated according to the green arc.

be computed directly, as explained above; there is no need to
compute barycenters to find the new adjacent vertices.

Let w be a new vertex adjacent to v. Then w has degree 3 and
is at level n+1 because it shares an edge with v. The j-th vertex
in star(6,0) has orientation 2 j. Therefore, if w is the j-th vertex
in the new star of v, then the edge vw has orientation 2 j+(k+1)
and so the edge wv has the reverse orientation, 6+2 j+(k+1);
this is the orientation of w, because the orientation of a vertex of
degree 3 is the same as the orientation of any of its edges.

Let u be an old vertex adjacent to v. After the subdivision,
u becomes opposite to v and adjacent to two consecutive new
vertices adjacent to v. Therefore, the degree of u increases by 1
because it loses one edge and gains two. The level of u remains
the same, except when its old degree is 5, because then it loses
its longest edge (see Fig. 11); in this case, the level of u is
incremented. It remains to update the orientation of u to reflect
its new star. Since the angles around v are all 60°, the angles in
the old star of u can be only 90° or 120°, never 60°. Therefore,
there are very few possibilities for the edge uv in the old star
of u (see Fig. 11). If u is the j-th vertex in the old star of v, then
vu has orientation 2 j+ k and so uv has the reverse orientation
k′ = 6+ 2 j+ k. To find the orientation of the new star u, just
imagine rotating uv until it matches the edge that is horizontal
in the corresponding standard star (see Fig. 6). More precisely,
the orientation of the new star of u is k′+4 when the old degree

preprint accepted for publication / Computers & Graphics (2024) 7

of u is 3, k′±4 when the degree is 4, and k′+1 when the degree
is 5 (see Fig. 11).

Reconstructing the mesh. To reconstruct the mesh from our
representation, we need to find the edges and the faces of the
mesh from the information about the vertices. To ensure consis-
tency of the reconstructed edges and faces, we follow a standard
approach in solid modeling and handle vertices as topological
entities: only one instance of each vertex is present and adjacent
elements refer to those instances. We rely on the cloud for this
key task: it maps lattice coordinates to topological vertices.

To reconstruct the edges around a given vertex, we need to
find the vertices adjacent to it. Those vertices are given by the
star of the vertex, which is obtained by scaling and translating the
appropriate standard star, as we have seen above. To reconstruct
the faces around a given vertex, we need to find the vertices
opposite to it (see Fig. 10). When the angle at the vertex is 90°,
there is only one possible opposite vertex. When the angle
at the vertex is 60° or 120°, there are two possible opposite
vertices. To reconstruct the face in this case, we use the first
opposite vertex, the one closest to the center, if it is present in
the cloud; otherwise, we use the second opposite vertex, the one
farthest from the center. Table 3 gives the lattice coordinates
of all opposite vertices in star(d,0); they need to be scaled and
translated as before. Finally, the j-th face around a vertex v is
given by the vertices v,a j,o j,a j+1, where a j is the j-th adjacent
vertex and o j is the j-th opposite vertex.

Reconstructing redundant vertices. After loading a reduced
representation, we need to reconstruct the redundant vertices
that have been omitted. In a single linear-time pass, we traverse
the list of vertices ensuring that all the vertices adjacent to each
vertex v of degree 6 are present in the cloud. Every such vertex w
that is absent from the cloud is a vertex of degree 3 that has
been omitted and needs to be added to the cloud. The lattice
coordinates of w for indexing the cloud are known from the star
of v. The level and orientation of w are found as in the update
step described above: the level of w is that same as the level of v;
the orientation of w is 6+2 j+ k, if w is the j-th vertex in the
star of v and k is the orientation of v.

Conversion. Our representation does not assign IDs to vertices:
their lattice coordinates are effectively their IDs and the cloud
directly supports this. Nevertheless, sequential numerical vertex
IDs are convenient when one needs to process edges and faces
without repetition, because edges and faces can be given standard
representations using lists of vertex IDs, normalized by placing
the smallest ID first. Those vertex lists can then be used to index
hash tables for storing edges and faces without duplication. This
scheme directly supports creating both an internal representation
of the mesh using standard topological data structures [3] and
an external representation of the mesh in a standard format that
relies on vertex lists for faces, such as OBJ and OFF.

On the geometry side, the Cartesian coordinates of the ver-
tices are not needed for subdivision, but they may be needed
by the application using the mesh, typically to evaluate refine-
ment criteria. They are also needed for creating OBJ and OFF

files. Converting lattice coordinates [a,b,m] to Cartesian coor-
dinates (x,y) is simple: 1

3m (a+ bω2) = 1
3m (a+ b 1+

√
3 i

2) gives

x = 1
3m (a+b 1

2) and y = 1
3m (b

√
3

2). Thus, Cartesian coordinates
can be found as precisely as needed by the application, given the
value of

√
3 to sufficient precision; standard double precision

suffices for typical meshes.

6. Some statistics

We now report some statistics on how our representation
of adaptive diamond-kite meshes behaves as a function of the
refinement level. We consider two use cases: uniform meshes,
where all vertices of degree 6 are refined to a given refinement
level, and meshes refined adaptively around an implicit curve,
as in Fig. 1, where vertices of degree 6 are refined when at least
one of their edges crosses the curve. Uniform meshes are the
densest possible meshes and give upper bounds for the sizes
one can expect in applications. On the other hand, uniform
meshes offer the most opportunities for data reduction. Meshes
for implicit curves are typical of meshes refined around the
boundary of a region of interest. In all experiments, the base
mesh is the one shown in Fig. 12 (top left). As an indication
of typical space requirements, we report sizes of external mesh
representations as CSV, OBJ, and OFF files. All three formats
record both the geometry and the topology of the mesh: CSV
files describe the geometry by 3-adic lattice coordinates and the
topology indirectly by vertex stars; OBJ and OFF files list the
Cartesian coordinates of the vertices (to some precision) and the
faces as lists of vertices IDs. The results appear in Tables 4–13.

Background. Planar meshes satisfy Euler’s famous formula:
V −E +F = χ , where V is the number of vertices, E is the
number of edges, F is the number of faces, and χ is a constant
that depends only on the topology of the meshed region. Indeed,
χ =C−H, where C is the number of connected components and
H is the number of holes. (Our base mesh has χ = 1.) Therefore,
χ remains constant when the mesh is refined (without breaking
or merging) and so E ∼V +F as the mesh grows. Quadrilateral
meshes satisfy 4F = 2E −B, where B is the number of boundary
edges. The refinement of an adaptive diamond-kite mesh never
changes its boundary and so B remains constant. Therefore,
E ∼ 2F as the mesh grows and so F ∼V and E ∼ 2V .

Uniform meshes. Table 4 shows how the size of uniform meshes
grows with the refinement level R. The relations between V , E,
and F discussed above are confirmed, of course. More inter-
estingly, these numbers grow geometrically with a ratio rapidly
approaching 3. Indeed, let Vd be the number of internal ver-
tices of degree d. Then, β +3V3 +4V4 +5V5 +6V6 = 2E, where
β accounts for the boundary vertices. Since boundary vertices
stop changing degrees at the early refinement levels, β is es-
sentially a constant (indeed, β ≤ 6V0, where V0 is the number
of boundary vertices). By far, most refinement happens in the
interior of the mesh, which is composed of vertices of degree 3
and 6 (see Fig. 12). Therefore, we can ignore all other vertices
(see Table 5) and get 3V3 +6V6 ∼ 2E ∼ 4V ∼ 4(V3 +V6). Thus,
V3 ∼ 2V6 and so V ∼ 3V6. Finally, during refinement all vertices

8 preprint accepted for publication / Computers & Graphics (2024)

Fig. 12. Uniform meshes refined to levels 0 to 3.

of degree 6 generate six new vertices of degree 3 and all the
old vertices degree 3 become new vertices of degree 6, and so
we have V (n+1)

3 ∼ 6V (n)
6 ∼ 3V (n)

3 , which explains the geometric
growth with ratio approaching 3 since 2V ∼ 6V6 ∼ 3V3.

Table 6 shows the sizes in bytes of external mesh represen-
tations as CSV, OBJ, and OFF files. CSV files are typically less
than 30% of the size of OBJ and OFF files. Reduced represen-
tations are typically 33% smaller than full representations, as
predicted, because most vertices have degree 6 and V ∼ 3V6.
Table 7 shows the sizes in bytes of these files after compression
with ‘bzip2 −9’ (the results of ‘gzip −9’ are quite similar and
have been omitted). Compressed CSV files are typically about
20% of the size of compressed OBJ and OFF files. Compressed
reduced representations are typically about 30% of compressed
full representations.

As the mesh is refined, all vertices are created inside the
region defined by the base mesh. Therefore, their Cartesian
coordinates remain bounded and so the numerators a,b in lattice
coordinates must grow to compensate for the denominator 3m.
Table 8 shows how the size of lattice coordinates grows. We
see the same geometric growth ratio of 3, except that it happens
every other step because the shortest mesh edges reduce by
ρ = 1√

3
on refinement.

Implicit curve. Tables 9–13 show the corresponding statistics
for adaptive diamond-kite meshes around an implicit curve (see
Fig. 13). Table 9 shows how the sizes of those meshes grow
with the refinement level R. The numbers grow geometrically
as before but now at a ratio less than 2. Table 10 shows that
the vertices of degree 3 are still the majority, comprising more
than half of all vertices. Tables 11 and 12 show that CSV files
are about 30% of the size of OBJ and OFF files. Reduced rep-
resentations are almost 50% smaller than full representations.
Compressed CSV files are typically less than 30% of the size of
compressed OBJ and OFF files. Compressed reduced representa-
tions are typically about 50% of compressed full representations.
Table 13 shows that the size of lattice coordinates grows at the
same geometric growth ratio of 3, every other step, just like
uniform meshes, as expected.

Fig. 13. Meshes for implicit curve refined to levels 4 to 7.

7. Comparison with topological data structures

We now discuss and compare our representation with standard
topological data structures and some variations [3, 9]. In the
context of data structures, a reference is either a pointer or an
integer that indexes an array; we assume it takes 4 bytes.

The simplest way to represent the topology of an adaptive
diamond-kite mesh is the one used in OBJ and OFF files: a list of
faces and their vertices. This takes 4 references per face and so
4 references per vertex (recall that F ∼V and E ∼ 2V). Including
face adjacency relations requires 4 additional references per
vertex. Standard topological data structures for a planar mesh are
more complete and so use many more references per vertex [3]:

data structure total references per vertex

winged-edge V + 8E +F 18
dcel V + 6E +F 14

half-edge V +10E +F 22
quad-edge V + 8E +F 18

The star-vertex data structure [9] uses about 2δ +2 references
per vertex, where δ is the average vertex degree in the mesh.
Adaptive diamond-kite meshes have δ ≈ 4. Therefore, star-
vertex uses about 10 references per vertex.

The memory used by those data structures is much larger than
ours. In its simplest form, our representation uses 3 bytes per
vertex for the topological data d,k,n. Given the narrow range of
these fields, we can use 3+4+5 = 12 bits per vertex for this
data since the degree is at most 6, the orientation is at most 11,
and the level is most probably less than 32. In both cases, our
representation uses less than 1 reference per vertex.

Representing the geometry of the mesh with single-precision
floating-point numbers and with 3-adic lattice coordinates takes
about the same amount of space. Indeed, with single-precision
floating-point numbers it takes 64 bits per vertex, and we can
comfortably use 24 bits for a,b and 8 bits for m and so 56 bits
per vertex. This is a fair comparison, since single-precision
numbers have a mantissa of 23 bits.

In summary, our representation takes 68 bits per vertex:
56 bits for the geometric data a,b,m, which is the key to query
the cloud, and 12 bits for the topological data d,k,n, which is
the value stored in the cloud for that key.

preprint accepted for publication / Computers & Graphics (2024) 9

To ensure good performance of our representation, we assume
that the cloud is a well-implemented hash table that answers
queries in expected constant time and uses memory efficiently
with high occupancy and low bookkeeping. Then all local op-
erations that query or update our representation take expected
constant time. Retrieving adjacent elements in topological data
structures typically requires many pointer indirections, which
may slow down local queries and updates.

8. Conclusion

The conciseness of our vertex-centric representation for adap-
tive diamond-kite meshes is achieved by (1) representing vertex
coordinates with integers that can index a hash table to store
vertices as topological entities and (2) exploiting the rigidity
of vertex stars to avoid representing explicitly any topological
relations. Even so, all topological elements and relations are
reconstructed in expected constant time per element. We rely on
a good hash table for this performance. Precomputing standard
stars simplifies the key tasks.

Our representation can be easily extended to general diamond-
kite meshes by replacing the degree with a type corresponding to
the 11 possible arrangements of angles around a vertex given in
Table 1. However, we do not know how to extend the local sub-
division operation to handle such general meshes. Nevertheless,
our representation can be easily adapted to diamond-kite meshes
that use different refinement procedures. The appendix contains
a brief description of how our vertex-centric approach provides
a framework for representing Fathauer’s kite fractals [6].

Acknowledgements. I thank David Eppstein for generously shar-
ing his proof-of-concept Python implementation of adaptive
diamond-kite meshes; Craig Kaplan for pointing me to the work
of Robert Fathauer on kite fractals; Asla Medeiros e Sá for show-
ing me Eppstein’s paper and hearing my thoughts about it; and
an anonymous referee for suggesting it might be possible to
remove some internal vertices, which led me to reduced rep-
resentations. This research was done in the Visgraf Computer
Graphics laboratory at IMPA in Rio de Janeiro, Brazil. Visgraf is
supported by the funding agencies FINEP, CNPq, and FAPERJ,
and also by gifts from IBM Brasil, Microsoft, NVIDIA, and
other companies.

References

[1] D. Bommes, B. Lévy, N. Pietroni, E. Puppo, C. Silva, M. Tarini, and
D. Zorin. Quad-mesh generation and processing: A survey. Computer
Graphics Forum, 32(6):51–76, 2013.

[2] L. H. de Figueiredo. A vertex-centric representation for adaptive diamond-
kite meshes. Code at github.com/lhf/dk, 2024.

[3] L. De Floriani and A. Hui. Shape representations based on simplicial and
cell complexes. In Eurographics 2007 State of the Art Reports, pages
63–87. Eurographics, 2007.

[4] R. Diaz, M. Dreux, H. Lopes, and T. Lewiner. A simple compression of
tri-quad meshes with handles. In Full Papers Proceedings of WSCG 2010,
pages 205–212, 2010.

[5] D. Eppstein. Diamond-kite adaptive quadrilateral meshing. Engineering
with Computers, 30(2):223–235, 2014.

[6] R. W. Fathauer. Fractal tilings based on kite- and dart-shaped prototiles.
Computers & Graphics, 25(2):323–331, 2001.

[7] R. Fellegara, K. Weiss, and L. De Floriani. The stellar decomposition: A
compact representation for simplicial complexes and beyond. Computers
& Graphics, 98:322–343, 2021.

[8] J. Fuentes-Sepúlveda, G. Navarro, and D. Seco. Navigating planar
topologies in near-optimal space and time. Computational Geometry,
109:101922, 2023.

[9] M. Kallmann and D. Thalmann. Star-vertices: A compact representation
for planar meshes with adjacency information. Journal of Graphics Tools,
6(1):7–18, 2001.

[10] D. King, J. Rossignac, and A. Szymczak. Connectivity compression for
irregular quadrilateral meshes, 2000. arXiv:cs/0005005.

[11] G. Navarro. Compact Data Structures: A Practical Approach. Cambridge
University Press, 2016.

[12] J. E. Soto Sánchez, T. Weyrich, A. Medeiros e Sá, and L. H. de Figueiredo.
An integer representation for periodic tilings of the plane by regular poly-
gons. Computers & Graphics, 95:69–80, 2021.

[13] B. Von Herzen and A. H. Barr. Accurate triangulations of deformed,
intersecting surfaces. Computer Graphics, 21(4):103–110, 1987. (Proc.
SIGGRAPH ’87).

https://github.com/lhf/dk

10 preprint accepted for publication / Computers & Graphics (2024)

STATISTICS FOR UNIFORM MESHES

R V E F E/V F/V V growth

0 217 399 183 1.839 0.843 1.000
1 487 939 453 1.928 0.930 2.244
2 1135 2235 1101 1.969 0.970 2.331
3 2767 5499 2733 1.987 0.988 2.438
4 7075 14115 7041 1.995 0.995 2.557
5 18979 37923 18945 1.998 0.998 2.683
6 52891 105747 52857 1.999 0.999 2.787
7 151483 302931 151449 2.000 1.000 2.864
8 441763 883491 441729 2.000 1.000 2.916
9 1302931 2605827 1302897 2.000 1.000 2.949

Table 4. Sizes and growth of uniform meshes.

R 0 3 4 5 6 total V3/V

0 66 106 0 0 45 217 0.49
1 66 272 16 25 108 487 0.56
2 66 650 72 75 272 1135 0.57
3 66 1634 182 167 718 2767 0.59
4 66 4310 404 311 1984 7075 0.61
5 66 11906 784 571 5652 18979 0.63
6 66 33914 1460 1019 16432 52891 0.64
7 66 98594 2640 1803 48380 151483 0.65
8 66 290282 4692 3195 143528 441763 0.66
9 66 861170 8308 5635 427752 1302931 0.66

Table 5. Distribution of degrees for uniform meshes.

R CSV OBJ OFF CSV/OBJ CSV/OFF reduced red/full

0 2751 7680 7239 0.36 0.38 1460 0.53
1 6466 18434 17450 0.35 0.37 2767 0.43
2 15321 51210 48927 0.30 0.31 6461 0.42
3 38528 133271 127724 0.29 0.30 15330 0.40
4 99571 365131 350968 0.27 0.28 38495 0.39
5 284920 1023179 985202 0.28 0.29 99636 0.35
6 812611 2978332 2872530 0.27 0.28 284881 0.35
7 2398081 8803735 8500744 0.27 0.28 812775 0.34
8 7064084 26680004 25796453 0.26 0.27 2397658 0.34
9 22085931 80702020 78096136 0.27 0.28 7064290 0.32

Table 6. Size of files in bytes.

R CSV OBJ OFF CSV/OBJ CSV/OFF reduced red/full

0 472 1654 1656 0.29 0.29 282 0.60
1 1214 3901 3914 0.31 0.31 555 0.46
2 2626 9098 9132 0.29 0.29 1309 0.50
3 6527 23825 24119 0.27 0.27 2828 0.43
4 15804 62244 62410 0.25 0.25 6902 0.44
5 45346 186156 182900 0.24 0.25 16664 0.37
6 122356 580741 580689 0.21 0.21 46894 0.38
7 403829 1922938 1936033 0.21 0.21 136289 0.34
8 1177249 6245451 6268366 0.19 0.19 407279 0.35
9 3988817 20187852 20281873 0.20 0.20 1233642 0.31

Table 7. Size of bzip2-compressed files in bytes.

R min max m growth

0 −6 16 0 1.000
1 −11 44 1 2.750
2 −11 44 1 1.000
3 −29 128 2 2.909
4 −29 128 2 1.000
5 −83 380 3 2.969
6 −83 380 3 1.000
7 −245 1136 4 2.989
8 −245 1136 4 1.000
9 −731 3404 5 2.996

Table 8. Size of lattice coordinates in uniform meshes.

STATISTICS FOR IMPLICIT CURVE

R V E F E/V F/V V growth

0 217 399 183 1.839 0.843 1.000
1 277 519 243 1.874 0.877 1.276
2 379 723 345 1.908 0.910 1.368
3 649 1263 615 1.946 0.948 1.712
4 1159 2283 1125 1.970 0.971 1.786
5 1981 3927 1947 1.982 0.983 1.709
6 3559 7083 3525 1.990 0.990 1.797
7 6247 12459 6213 1.994 0.995 1.755
8 10759 21483 10725 1.997 0.997 1.722
9 18949 37863 18915 1.998 0.998 1.761

Table 9. Sizes and growth of implicit meshes.

R 0 3 4 5 6 total V3/V

0 66 106 0 0 45 217 0.49
1 66 134 14 9 54 277 0.48
2 66 185 33 22 73 379 0.49
3 66 332 66 56 129 649 0.51
4 66 614 124 114 241 1159 0.53
5 66 1030 252 254 379 1981 0.52
6 66 1853 485 475 680 3559 0.52
7 66 3242 888 878 1173 6247 0.52
8 66 5543 1593 1589 1968 10759 0.52
9 66 9771 2825 2821 3466 18949 0.52

Table 10. Distribution of degrees for implicit meshes.

R CSV OBJ OFF CSV/OBJ CSV/OFF reduced red/full

0 2751 7680 7239 0.36 0.38 1460 0.53
1 3595 10062 9498 0.36 0.38 1851 0.51
2 5029 15086 14318 0.33 0.35 2561 0.51
3 8830 27641 26333 0.32 0.34 4270 0.48
4 16035 53228 50896 0.30 0.32 7489 0.47
5 29047 96252 92275 0.30 0.31 13236 0.46
6 54193 180662 173528 0.30 0.31 25191 0.46
7 97540 324406 311897 0.30 0.31 45930 0.47
8 170543 569255 547718 0.30 0.31 81715 0.48
9 314507 1038938 1001021 0.30 0.31 145761 0.46

Table 11. Size of files in bytes.

R CSV OBJ OFF CSV/OBJ CSV/OFF reduced red/full

0 472 1654 1656 0.29 0.29 282 0.60
1 723 2335 2318 0.31 0.31 395 0.55
2 1045 3200 3187 0.33 0.33 600 0.57
3 1838 5769 5767 0.32 0.32 926 0.50
4 3168 10192 10227 0.31 0.31 1679 0.53
5 5702 18610 18675 0.31 0.31 2765 0.48
6 9783 33530 33675 0.29 0.29 5169 0.53
7 18313 62125 62407 0.29 0.29 8671 0.47
8 30900 106479 107177 0.29 0.29 15873 0.51
9 58458 212883 211461 0.27 0.28 27430 0.47

Table 12. Size of bzip2-compressed files in bytes.

R min max m growth

0 −6 16 0 1.000
1 −6 29 1 1.813
2 −6 29 1 1.000
3 −6 71 2 2.448
4 −6 74 2 1.042
5 −6 203 3 2.743
6 −6 206 3 1.015
7 −6 602 4 2.922
8 −6 602 4 1.000
9 −6 1796 5 2.983

Table 13. Size of lattice coordinates in implicit meshes.

preprint accepted for publication / Computers & Graphics (2024) 11

Appendix.
A vertex-centric representation for Fathauer’s kite fractals

Our vertex-centric approach provides a framework for rep-
resenting diamond-kite meshes that use different refinement
procedures. One interesting such family of meshes is Fathauer’s
kite fractals [6] (see Fig. 14). The core of our representation for
those meshes is the same: 3-adic lattice coordinates, topology
represented by the type, orientation, and scale of vertex stars, the
cloud for storing vertices, standard stars as templates. However,
all details are different: refinement happens only at the boundary,
holes appear during refinement, and vertex stars are completely
different. Here is a brief description of the details.

Stars. The standard vertex stars in Fathauer’s kite fractals are
shown in Fig. 15. The lattice coordinates of adjacent and oppo-
site vertices in these stars are easily found. Vertices of type 20,
31, 32 are boundary vertices. Vertices of type 41, 42, 43, 50, 60
are internal vertices. The first digit of the type gives the degree
of the vertex.

Base mesh. The base mesh is formed by six kites around the
origin (see Fig. 14, top left). It contains boundary vertices of
type 20 and 31, and a single internal vertex of type 60. Vertices
of type 32 first appear at refinement depth 1.

Refinement. Fathauer [6] briefly explains the refinement proce-
dure geometrically, but it is easy to explain it precisely using
vertex types. At each refinement step, the boundary vertices
are refined and become internal vertices, thus expanding the
boundary of the mesh: vertices of type 20 are refined to type 50,
vertices of type 31 are refined to type 41, vertices of type 32
are refined to type 42. The refinement is performed by simply
updating the type of the vertices; the standard stars have been
selected so that the orientation remains the same during refine-
ment. The new vertices created at that step are given proper
type, orientation, and level, following an analysis similar to that
in §5. After refinement depth 5, collisions start to appear as the
boundary expands, thus creating hexagonal holes in the mesh
(see Fig. 16). The new vertices created when a vertex of type 20
becomes of type 50 are checked to exist in the cloud. If they do,
then the boundary has collided with itself and the new vertices
are updated to type 32 and 43 with the proper orientation.

Conclusion. Our vertex-centric framework for representing
adaptive diamond-kite meshes works also for representing
Fathauer’s kite fractals, which are adaptive kite meshes. The
refinement is translated into vertex refinements, which are es-
sentially changes of vertex type. The appearance of collisions
was surprising but added interest; they are easily handled by
our framework. Again, the cloud is instrumental to simplify
the code. Despite having simpler faces, Fathauer’s kite fractals
have a richer topology (more vertex types and the continuous
appearance of holes) and so are somewhat more complicated to
represent in our framework than Eppstein’s meshes. Neverthe-
less, our framework provides a reliable guide for the whole task.
Our code for kite fractals using our vertex-centric framework is
publicly available [2].

Fig. 14. A Fathauer kite fractal refined to depths 0 to 5 and 7.

20 31 32 41

42 43 50 60

Fig. 15. The possible vertex stars in Fathauer’s kite fractals at orientation 0.
Adjacent vertices and edges in black; opposite vertices and edges in orange.

Fig. 16. No holes at depth 4 (left). Holes start to appear at depth 5 (middle).
Vertices of type 20 and 31 become of type 32 and 43 (right) on collision.

	Introduction
	Adaptive diamond-kite meshes
	Background and inspiration
	Our representation
	Using the representation
	Some statistics
	Comparison with topological data structures
	Conclusion

