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Abstract

Existing methods that are able to interactively render complex CSG objects with the
aid of GPUs are both image based and severely bandwidth limited. In this paper
we present a new approach to this problem whose main advantage is its capability
to efficiently scale the dependency on CPU instruction throughput, memory band-
width and GPU instruction throughput. Here, we render CSG objects composed
of convex primitives by combining spatial subdivision of the CSG object and GPU
ray-tracing methods: the object is subdivided until it is locally “simple enough”
to be rendered effectively on the GPU. Our results indicate that our method is
able to share the load between the CPU and the GPU more evenly than previous
methods, in a way that depends less on memory bandwidth and more on GPU
instruction throughput for up to moderately sized CSG models. Even though the
same results indicate that the present method is eventually becoming more bus
bandwidth and CPU limited with the current state of the art GPUs, especially for
extremely complex models, our method presents a solid recipe for escaping this
problem in the future by a rescale of the dependency on CPU/memory bandwidth
vs. GPU instruction throughput. With this, greater increases in performance are to
be expected by adapting our method for newer generation of graphics hardware,
as instruction throughput has historically increased at a greater pace than both bus
bandwidth and internal GPU bandwidth.
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1 Introduction

One of the most intuitive ways to model solid objects is by constructing
them hierarchically: combinations of simple objects generate more and more
complex objects. Several representations that incorporate this paradigm ex-
ist, and CSG [13] is the most popular.

In the CSG representation, solid objects are obtained by successive combi-
nations of primitives, using boolean operations such as union, difference,
and intersection. There, solid objects are represented by the (CSG) expres-
sion corresponding to the sequence of boolean operations of primitives that
led to them. These CSG expressions are stored as trees, called CSG trees,
whose leaves represent primitives and whose nodes represent boolean op-
erations. A geometric transformation is associated with each node, to allow
translation, rotation and scaling of each part of the solid object. It is also
possible to associate a complement operation with each leaf node, so that
the complement of the primitive in question is considered, instead of the
primitive itself.

1.1 Prior work and interactivity

Modeling under the CSG paradigm is extremely intuitive for the user. How-
ever, this paradigm would be much more useful if it would allow for inter-
activity in the modeling process — that is, realtime rendering of solid ob-
jects as their CSG representation is modified by the user. Moreover, it is
highly desirable that this can be done for ever more complex CSG objects,
as then the range of applications of this representation can be expanded.
Since the introduction of CSG, several approaches have been devised to-
wards achieving this goal.

Some of these approaches involve converting the CSG representation into a
boundary representation and rendering that boundary, but these approaches
are not really suitable for interactive performance. Another class of ap-
proaches to this problem is image-based: some of which run purely on the
CPU, while others make use of special purpose hardware. Goldfeather et al.
[4] presented an algorithm for rendering CSG models with convex objects
(and later with non-convex objects [5]) using a depth-layering approach on
the Pixel Planes.

Wiegand [23] proposed an implementation of Goldfeather’s algorithm on
standard graphics hardware. Rappoport and Spitz [12] converted the CSG
representation to a Convex Differences Aggregate (CDA) representation
and then used the stencil buffer to render at interactive rates. Stewart et al.
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[15] improved upon Goldfeather’s algorithm and then introduced the Se-
quenced Convex Subtraction (SCS) algorithm [17], and later refined it [18].
Erhart and Tobbler [3], Guha et al. [6], and Kirsch and Dollner [9] imple-
mented optimizations over either the SCS, the Goldfeather or the layered
Goldfeather algorithms to better use newer graphics hardware. Adams and
Dutré [1] presented an algorithm that performed interactive boolean op-
erations on free-form solids bounded by surfels. More recently, Hable and
Rossignac [7] used an approach that combines depth-peeling with the Blist
formulation [14].

The subset of these algorithms that have reached interactivity on decently
sized models (∼ 500 primitives) are image-based, using either depth lay-
ering or depth peeling approaches. For this reason, (when not constrained
by geometry throughput) they are bandwidth limited — and bandwidth of
standard graphics hardware has historically improved at a rate that is much
lower than that of instruction throughput. Another disadvantage of these
algorithms in comparison to ours is their need to use multiple passes if one
wants to render CSG objects with an unlimited number of primitives (due
to the number of planes available in the stencil buffer) — although recently
an Optimized Blist Form has been devised that lifts this limitation for Blis-
ter [16].

1.2 Our work

We present a model-based method inspired on traditional CPU CSG ren-
dering approaches (e.g., [2]) in the sense that a spatial subdivision of the
CSG object is performed. However, unlike in CPU based methods, we do
not attempt to trace rays globally through the spatially subdivided struc-
ture. Instead, we use the GPU to trace rays locally on each part of the re-
sulting subdivision structure. Because the spatial subdivision is performed
until the regions of the CSG object inside each of these parts are “simple
enough”, this local ray tracing in the GPU can be performed efficiently. We
show that this method is essentially instruction throughput limited, rather
than bandwidth limited for up to moderately sized CSG models. We also
argue that in the future, by changing the concept of “simple enough”, it
will be possible to shift the balance of this limitation towards using more
GPU instruction throughput power. With this, we expect our method to
maintain its greater dependency on GPU instruction throughput as newer
generations of graphics are released.
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2 Spatial Subdivision and CSG

The main insight of our approach is that surfaces of CSG objects are for the
most part locally determined by single primitives or by the boolean oper-
ations of just two primitives. The exceptions are points of the CSG object
that are in the intersection of surfaces of three or more different primitives,
i.e., points of order 3 or higher (see Fig. 1). Because ray-tracing of primitives
and of boolean operations of two primitives can be done efficiently on the
GPU, as will be shown in Sect. 3, rendering the entire CSG object, with the
exception of neighborhoods of points of order 3 or higher, reduces to:

(1) Subdividing the CSG object until each part either (i) is composed of
a single primitive or a boolean operation of two primitives, or (ii) is
insignificant enough to be ignored — where significance is measured
by the number of pixels that the given part projects to on the screen —
corresponding to either a part that contains one of the exception points,
or to one that is still complex even though it does not contribute much
to the image and hence can be ignored.

(2) Ray-tracing each part that falls in case (i) on the GPU.

(a) (b)

Fig. 1. (a) Here we have a sphere subtracted by two other spheres. Note that the

surface at the protruding point is determined jointly by all the 3 spheres, since

it lies at the intersection of the surfaces of those spheres. This point has order 3.

(b) Note that, no matter how much the octree is subdivided at the protruding
point, there will always exist one cell, namely the one containing this point,

which does not have a simple local representation of the CSG object. Hence,

we impose a stopping criteria to the subdivision process, to disregard such cells

when they are no longer significant.

This rendering process will produce correct results at most pixels. The ex-
ceptions are those corresponding to parts which fall in case (ii). These, how-
ever, in most cases correspond to minimal artifacts, which can be minimized
or enlarged by changing a threshold — the number of pixels that the given
part of the subdivided structure projects to on the screen. Obviously, the
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smaller the threshold the more complex the subdivision structure will be-
come. The tradeoff here is quality over subdivision complexity and ren-
dering time. The ability of our approach to regulate this tradeoff could be
favorable: for the initial design of a very complex CSG model, when small
artifacts are of no concern, it might be desirable to use large thresholds in
order to increase interactivity (see Fig. 2).

2.1 Spatial subdivision structures

Subdivision of the CSG object is done using a modified octree. At each level
of the octree we divide the existing cells in two instead of in eight, as in tra-
ditional octrees. This division is carried sequentially on the X, Y and Z axis,
in a cyclic manner, making it a sequenced kd-tree. This binary subdivision
greatly improves the CSG tree simplification procedure (see Sect. 2.2.1).

Along with each cell of the octree we keep a CSG tree structure that holds
the simplest representation of the surface of the original CSG object when
restricted to that cell (i.e., it holds the simplest local representation of the
surface of the original object, where here the concept of locality is in the
sense of restriction to a given cell).

2.2 Octree subdivision

The subdivision starts with the axis-aligned bounding box of the CSG object
as the initial cell of the octree. This cell’s CSG tree is set to a copy of the
CSG tree representing the CSG object. We proceed by subdividing the cell,
setting each of its children’s CSG trees to a copy of the cell’s own CSG tree,
and then simplifying each child cell’s CSG tree to obtain the simplest CSG
tree that still correctly represents the restriction of the surface of the original
CSG object to each child cell. This cell subdivision followed by CSG tree
simplification is repeated recursively for each of the cell’s children, until
one of the following conditions are met:

(1) The cell’s CSG tree is empty (i.e., the surface of the CSG object does not
intersect with the cell).

(2) The cell’s CSG tree is exclusively composed of unions of primitives
(rendering the union of an arbitrary number of primitives on the GPU
can be done efficiently — see Sect. 3.3.3 — hence we do not further sub-
divide and render these cases right away).

(3) The cell’s CSG tree has depth 2, but is not an union of two primitives
(which would fall into case 2), i.e., the part of surface of the CSG ob-
ject that is inside this cell is determined by two primitives and is thus
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(a)

(b)

(c)

(d)

Fig. 2. (a) Using a threshold of 1 pixel usually produces no noticeable artifacts.

(b) However in some scenes artifacts can be quite noticeable with that thresh-

old, as evidenced by the zoom in on the walls. (c) Using smaller thresholds (here,
0.5 pixels) improves image quality by reducing artifacts and (d) increasing the

threshold (5 pixels) produces the opposite effect. Note how changing the thresh-

old affects the complexity of the octree around the artifacts. (Please zoom in for

better visualization of artifacts.)
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simple enough to be rendered efficiently on the GPU.
(4) The cell projects onto less than a threshold of pixels in the screen, i.e.,

the cell is insignificant.

(a) (b)

Fig. 3. (a) A reasonably complex CSG model, composed of a cylinder subtracted

by 1000 randomly placed spheres and (b) its final octree: each cell drawn here
has in its interior a part of the surface of the CSG object that can be represented

by either a single primitive (or its complement) or by a boolean operation of just

two primitives (complemented or not).

Cells that fall in either of these cases are called leaf cells and all the others are
called node cells. Also, in practice we approximate the threshold test of the
projected area of a cell by threshold tests on the lengths of the projections of
its edges onto the visible screen (i.e. the parts of the edges that lie within the
visible screen): if all edges of a cell project to lengths of less than the given
threshold we claim the projected area to be less than the threshold.

Note that at each level of subdivision we do not start with the original CSG
tree, but rather with the CSG tree of the parent cell, which is already a sim-
plification of the original CSG tree (which restricted to the parent cell, and
hence to the child cell, correctly represents the surface of the CSG object) —
thus the improvement of doing binary subdivision: a faster simplification
process.

2.2.1 CSG tree simplification scheme

As mentioned before, the goal of our CSG tree simplification scheme is to,
given a cell and a CSG tree, simplify the CSG tree as much as possible,
ending with the simplest CSG tree such that the restriction of the surface of
the original CSG object to that cell is correctly represented by the simplified
CSG tree. This is done in a standard fashion, by pruning sub-trees of the
CSG tree whose surfaces (of the object they represent) do not intersect with
the current cell, in a recursive bottom-up approach.

7
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2.3 Traversal and rendering

Once the octree has been generated, it is traversed recursively in a view-
dependent front-to-back manner. When a leaf cell corresponding to cases
1 or 4 in Sect. 2.2 is reached it is ignored. When a leaf cell corresponding
to cases 2 or 3 is reached, the part of the surface of the CSG object in the
interior of that cell (namely, the restriction of the object given by the cell’s
CSG tree to the cell’s interior) is rendered in the GPU, as detailed in the next
section.

It is also possible to render the CSG object while subdividing it. By do-
ing so, parallelization of the subdivision on the CPU and the rendering on
the GPU is achieved (see Sect. 4). In our analysis, we consider both cases
(generating octree and then traversing, as well as rendering while octree is
being generated), since for visualization purposes, once the subdivision has
been completed for a given CSG object, it need not be recomputed in order
for the object to be viewed under different lighting conditions. In a similar
fashion, to visualize the object under a new angle, only minimal updates
to the octree are required, provided the new angle is close to the previous
angle (which is a valid assumption in the case of interactive visualization),
because the only cells that possibly need to be updated are the ones that
contain an intersection of three or more objects and no longer project to less
than a threshold of pixels.

3 Ray-tracing CSG objects in the GPU

Recent generations of GPUs have allowed the design of algorithms that
have a substantial part of their workload performed by the GPU. Several
developments have been made toward transferring ray-tracing of objects
from the CPU to the GPU. Some of the early efforts in this direction ad-
dressed volume rendering on the GPU [10]. Also, the use of proxy geome-
try to obtain ray parameters on the GPU has been suggested in the hybrid
approach of Westermann and Sevenich [22]. Here, we extend on the work
developed by Toledo and Levy [19], to ray-trace in the GPU not only a set
of convex primitives (or their complements), but also boolean operations of
them (or their complements).

Because we render the restriction of the CSG object to each cell, we also deal
with the more specific problem of rendering only the parts of primitives or
boolean operations of primitives that are inside a given cell. This is essen-
tially done by subsequently clipping the results of the original ray-tracing
algorithm to the corresponding cell, as will be detailed later on. Sect. 3.1 is

8



Acc
ep

te
d m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

an introductory presentation to the concepts of ray-tracing GPU primitives;
for the sake of clarity, it does not incorporate this clipping. In Sects. 3.2
and 3.3 we detail at length how to ray-trace single primitives and boolean
operations of primitives, respectively, when this simplification is lifted.

3.1 Concepts of ray-tracing GPU primitives

The basic idea of ray-tracing primitives in the GPU, as introduced by Toledo
and Levy [19], is to render some object (e.g., a bounding box) whose pro-
jection on the screen (called the ray-tracing area or RTA for short) covers
the projection of the desired primitive (see Fig. 4) after having bound ap-
propriate vertex and pixel shaders. With this, the shader will run for every
point of each of the faces of the rendered object. Then, in the shader, the
appropriate ray-tracing can be performed to determine which color value
should be used in each of these points to achieve the rendering of the de-
sired primitive.

More specifically, given a point on one of the faces of the rendered object,
the shader will trace a ray from that point, in the direction of the camera,
determining whether the ray intersects the primitive or not, and performing
the shading, if appropriate (see Sect. 3.1.2).

(a) (b) (c)

Fig. 4. The front faces of the bounding box of a (a) cylinder (b) sphere (c) cone is

rendered. The pixel shader then runs on each pixel of these front faces ray-trac-

ing the respective primitives.

3.1.1 Bounding box as the ray-tracing area

In this paper, we use Axis Aligned Bounding Boxes (AABBs) as the ren-
dering objects (i.e., the cells of the octree structure defined in the previous
section), and their front faces as RTAs. While this works, we realize that
it might not be the most efficient rendering object for every case, because
depending on the primitive and the camera position a different rendering
object might still circumscribe the desired primitive while having a smaller

9



Acc
ep

te
d m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

projected area (RTA). For example, a better suited rendering object for a
cone would be a pyramid in which the cone is inscribed, as the pixel shader
would run on a smaller number of pixels than with a bounding box as the
rendering object, while it would still be able to ray-trace the cone properly.
A more thorough analysis of the efficiency of different rendering objects
and their RTAs is provided by Toledo and Levy [19].

3.1.2 The roles of vertex and pixel shaders

In this context, when rendering the front faces of the bounding box of a
primitive, the vertex shader will be executed for every vertex of this bound-
ing box, passing to the pixel shader vectors containing light, pixel, and
camera positions, all in object space. For each pixel of the projection of this
bounding box, the pixel shader receives this information, as well as param-
eters containing information on the primitive in question (e.g., for a sphere:
center, radius), calculates the ray direction, traces the ray starting from the
point at the bounding box corresponding to the pixel in question, and fi-
nally calculates the ray-primitive intersection that is closest to the camera,
as well as the primitive’s normal at the intersection. Given the latter two, the
pixel shader computes the pixel’s color and depth, as detailed in Sect. 3.2.

3.2 Ray-tracing of simple convex primitives

While the approach described above works for non-convex primitives, from
here on we will focus solely on convex primitives. With this restriction, we
are assured that any given ray-primitive intersection result will either be an
empty set or consist of a single segment (which can be stored with only two
scalar variables). Thus, we can have an efficient implementation of the ray-
primitive intersection and other necessary algorithms on the pixel shader.

In this scenario, given a cell L and a primitive P, in order to ray-trace P
restricted to L we use the framework described in Sect. 3.1 with a pixel
shader that performs the following steps:

(1) o← Object space coordinates of point for which shader is running
v← Camera direction
r(t) = o+ t · v← Ray in camera direction starting at o

(2) Ray-cell intersection: Intersect L with r(t).
Obtain a segment SL = [0, t f ] as a result (i.e., the set of all t such that r(t)
and L intersect). 1 ,

1 The ray always intersect the cell, because the ray starts at a point on one of the
front faces of the cell.

10
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(3) Ray-primitive intersection: Intersect P with r(t).
Obtain SP, a segment (degenerate or not) or an empty set. Calculate
surface normals at the ray-surface intersection points (if any).

(4) Complementing: If P is complemented, complement SP and the re-
spective ray-surface intersection normals.

(5) Clip SP to L (i.e., intersect SP and SL), obtaining SR.
(6) If SR is empty, this pixel of the RTA does not correspond to a pixel of

the primitive, and is thus discarded.
(7) Let t ′ be the smallest value in SR.
(8) If t ′ = 0 and (−ε,ε) is in SP for some ε > 0, discard the pixel. 2

(9) Else, the ray intersects the surface of P inside L at r(t ′) = o + t ′ · v, and
then we:
• Depth Calculation: Calculate the correct depth value for this pixel

(this was originally set to the depth of o, which lies in one of the
faces of the cell, and must be updated to the depth of r(t ′)).
• Shading calculation: Calculate the color of the pixel, given t ′’s asso-

ciated color and surface normal (i.e., perform the shading given our
lighting model and surface properties).

Next, we describe in further detail each part of the above algorithm.

Ray-cell intersection: Since a cell is nothing more than an AABB, specified
by its lower left corner ll and its upper right corner ur, intersecting rays
with AABBs is relatively easy and is done with a simplified version of an
algorithm described by Haines [8] (see Alg.1). Note that we only need to
compute t f . Note that even though in practice a division by 0 might occur
(if one or more of the components of v are 0), it is always the case that at
least one of the 3 max operations will produce a finite result, and thus the
result is always correct even without a check for division by 0.

Algorithm 1 rayCellIntersection(ll, ur, o, v)

vl ← (ll−o)/v
vu← (ur−o)/v
t f ←min(max(vl.x,vu.x),max(vl.y,vu.y),max(vl.z,vu.z))

Ray-primitive intersection: We calculate the boundaries of the ray-primitive
intersection set by replacing the ray equation (r(t) = o + t · v) into the equa-
tion for the surface of the primitive in question (e.g., ||x−c||= a for a sphere
centered in c with radius a) and solving for t. At the same time, the primi-
tive normals at these boundary points are also calculated. Even though in

2 If this is the case, the object extends outside the cell towards the camera, since the
cell is in the range [0, t f ]. This means that the object is being clipped at this point by
the cell, so the pixel is discarded since it will certainly be shaded when a cell closer
to the camera, that contains the part of the surface that was clipped, is rendered.
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our system we only implemented ray-primitive intersection algorithms for
cylinders, cones, and spheres, it would be easy to implement similar ones
for other implicit surfaces defined by low degree polynomials, such as more
general quadrics or cubics. We provide pseudo-code for the case of a sphere
in Alg. 2.

Algorithm 2 raySphereIntersection(o, v, a, c)

t1← ∞
t2← ∞
o← o− c
δ ← (o · v)2−o ·o+a ·a

5: if δ ≥ 0 then
δ ←

√
δ

t1←−o · v−δ
t2←−o · v+δ
normal1← o+ t1 · v

10: normal2← o+ t2 · v
end if
return (t1,normal1),(t2,normal2)

Depth Calculation: Depth calculation is performed by transforming r(t ′)
from object-space to eye-space coordinates, dividing by the homogeneous
coordinate and re-scaling from [−1,1] to [0,1] (Alg. 3).

Algorithm 3 calcDepth(o, t, v)

MV ←ModelView matrix.
otveye←MV · (o+ t · v)
depth← 0.5+0.5 · (otveye.z/otveye.w)

Shading calculation: We use positional lighting and the Blinn reflection
model to perform the shading. Alg. 4 describes the details of this calcula-
tion. There, n is the surface normal at r(t ′), l is the unit vector from the posi-
tional light source to r(t ′), aC is the ambient color, dC is the diffuse color and
sC is the specular color. Note that although in Alg. 4 we use Blinn-Phong
shading, any other local shading model could be applied.

Algorithm 4 calcLighting(l, n, v, aC, dC, sC)

halfVec← (l + v)/||l + v||
color← aC +dC ·max{n · l,0}+ sC ·max{n ·halfVec,0}16 · (n · l > 0)

Complementing: Depending on the set SP to be complemented, there are
two possible cases (in either case, the complement of SP will consist of two
semi-intervals). We take different actions in each case, as specified below.
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(1) SP is an empty set.
• In this case, we set the new SP to be SP = (−∞, t]∪ [t,+∞) for some t

(any t).
(2) SP is a segment (i.e., SP = [t0, t1]).
• In this case, we set the new SP to be SP = (−∞, t0]∪ [t1,+∞), and com-

pute the new normals at the intersection points of the complemented
primitive (corresponding to t0 and t1) by inverting the sign of the nor-
mals calculated in step 3.

3.3 Ray-tracing boolean operations of simple convex primitives

Now that we have described how to ray-trace convex primitives or their
complements, we tackle the problem of ray-tracing boolean operations of
them (or their complements). In Sect. 3.3.1, we describe how to efficiently
perform the ray-tracing when the boolean operation is an intersection (in
the sense that the pixel shader implementation is efficient). In Sect. 3.3.2,
we show how to adapt this algorithm to handle the case where the boolean
operation is a difference. And finally, we detail how we handle the case
where the boolean operation is a union in Sect. 3.3.3.

3.3.1 Intersection of primitives

In this case, given a cell L and two primitives P1 and P2, we want to ray
trace P1∩P2 restricted to L. Again, we use the same framework described in
Sect. 3.1.2, with a pixel shader that performs the following steps:

(1) Ray-cell intersection: Intersect L with r(t).
Obtain a segment (SL = [0, t f ]) as a result.

(2) Ray-primitive intersection: Intersect P1 with r(t).
Obtain SP1, either a segment (degenerate or not) or an empty set as a
result. Calculate surface normals at the ray-surface intersection points
(if any).

(3) Ray-primitive intersection: Intersect P2 with r(t).
Obtain SP2, as in the previous step.

(4) Complementing: Complement SP1 and the respective normals if P1 is
complemented and likewise for SP2.

(5) Intersection of ray-primitive result sets: Intersect SP1 with SP2.
Obtain S. Associate with each boundary of S the appropriate normals
and colors, either from SP1 or SP2 — more on this in Sect. 3.3.4.

(6) Clip S to L, obtaining SR.
(7) Perform steps 6 to 9 of Sect. 3.2.
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3.3.2 Difference of primitives

The pixel shader to ray-trace the difference of primitives is exactly the same
as the one in Sect. 3.3.1, with one exception. We modify step 4 to instead
complement SP1 and the respective normals if P1 is complemented and com-
plement SP2 and the respective normals if P2 is not complemented.

3.3.3 Union of primitives

Ray-tracing the union of primitives constitutes a special case, as it can be
performed easily due to the z-buffer of the GPU. Given a cell L and a collec-
tion of primitives P1, . . . , Pk, to ray trace ∪Pn restricted to L one needs only
to render P1, . . . , Pk restricted to L independently, as explained in Sect. 3.2.
The z-buffer will then ensure that the correct color values get assigned to
each pixel, given the depth of each of the primitives.

3.3.4 Intersection of ray-primitive result sets

Most of the steps of the algorithm of Sect. 3.3.1 were already detailed in
Sect. 3.2. In this section we describe step 5, the only step missing an ex-
planation. Here, we show how to intersect SP1 and SP2 in a way that its
implementation on a pixel shader is efficient.

Depending on whether P1 and P2 are complemented, we have four possible
cases for SP1 and SP2.

(1) P1 not complemented, P2 not complemented:
SP1: 1 segment or empty-set
SP2: 1 segment or empty-set

(2) P1 not complemented, P2 complemented
SP1: 1 segment or empty-set
SP2: 2 semi-intervals

(3) P1 complemented, P2 not complemented (identical to previous case
with P1 and P2 interchanged)

(4) P1 complemented, P2 complemented:
SP1: 2 semi-intervals
SP2: 2 semi-intervals

Instead of handling these four cases in a single extremely complex pixel
shader, we implement each of them in a different pixel shader. Thus, de-
pending on the primitives being complemented or not, we load up a differ-
ent pixel shader. The main reason for this is that branching currently causes
a big impact on performance (more so than switching shaders), hence it is
more desirable to have one shader for each case than fours cases in a single
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shader. In addition to that, some of these cases can be handled in much sim-
pler ways than others, and this allows us to have simpler and more efficient
pixel shaders for these cases. Namely, calculating the intersection of two
segments is simpler than calculating the intersection of two semi-intervals
and 1 segment, which in turn is simpler than calculating the intersection of
two pairs of semi-intervals.

It is very possible that in the future, with more efficient branching in GPUs,
the performance difference between having separate shaders or a unified
one will be negligible and thus a unified shader will be preferable.

Next, we provide the details of the algorithms for each of these four cases.

Case 1: Segment(SP1) ∩ Segment(SP2)

Let SP1 = [t11, t12] and SP2 = [t21, t22]. We want to find S = SP1∩SP2 = [t1, t2]
and associate with t1 and t2 the appropriate normals and colors (either from
SP1 or SP2, depending on the specific situation).

Upon closer inspection, it is only necessary to calculate t1. This is because
t1 alone determines whether the given ray intersects a visible surface of the
CSG object when restricted to a cell (see Fig. 5). That is, we need only t1
to perform steps 6 and 7 of the algorithm for ray-tracing the intersection or
difference of primitives. Step 6 is performed by checking whether 0≤ t1≤ t f

(again, see Fig. 5). If that is the case, depth and shading are calculated at
o + t1 · v with the normal and color associated to t1, otherwise the pixel is
discarded.

Fig. 6 provides a graphical description of how t1 is calculated, while Alg. 5
contains the corresponding pseudo-code.

t1 t2 t1 t2

t1 t2 t1 t2 t1 t2

0 t_f

0 t_f 0 t_f

0 t_f

0 t_f 0 t_f

Do not clip:

(a) (b)

(c) (d)

Clip:

(f)

t2t1

(e)

Fig. 5. This figure describes the 6 possible cases of how S = [t1, t2] re-

lates to SL = [0, t f ], i.e., it describes the possible cases of the clipping oper-

ation. Obviously, cases (a) and (b) should not be clipped (these are deter-

mined by 0 < t1 < t f ). Cases (e) and (f) trivially should not be rendered,

since [t1, t2] ∩ [0, t f ] = /0. And in cases (c) and (d) we have [−ε ,ε ] contained in
[t1, t2]∩ [0, t f ] for ε = min(|t1|, |t2|) (see Sect. 3.3.1, step (7)).
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S

SP2

SP1

(a) (b)

Fig. 6. S is non-empty if (a) the left boundary of SP1 is inside SP2 = [t21, t22] or

(b) the left boundary of SP2 is inside SP1 = [t11, t12]. Hence the intersection is

non-empty if and only if t11 ≤ t22 and t12 ≥ t21. In that case t1 is the greatest of

t11 (case (a)) and t21 (case (b)).

Cases 2 and 3: Segment(SP1) ∩ two semi-intervals(SP2)

Let SP1 = [t11, t12] and SP2 = [−∞, t21]∪ [t22,∞]. We want to find S = SP1∩SP2.
Here, S might be an empty set, a segment or two segments, depending on
SP1 and SP2. Fig. 7 details each of the possible cases.

Only the left boundaries, t1 and t2, of each of the two possible segments
that might constitute S, are necessary. After calculating t1 and t2 we check
if the smallest of them, which we define to be t1 in our algorithm, is in
[0, t f ] (see Fig. 8). If so, we proceed to calculate the depth and shading with
o+t1 ·v as the intersection point, and with the appropriate normal and color.
Otherwise, we check whether t2 lies in [0, t f ]. If that is the case, we proceed
to calculate the depth and shading with o + t2 · v as the intersection point
and with the appropriate normal and color. Finally, if that is not the case,
the pixel is discarded (see Alg. 6).

S

SP2

SP1

(b) (c) (d) (e)
t1 t2 t1 t1 t1

(a)

Fig. 7. The four possible cases of combinations of SP1 and SP2 are depicted above.

As can be seen by (a), (b), (c) and (d), t1 exists if either t11 < t21, or t11 is in [t21, t22]
and t12 > t22, or t11 > t22. In the first and third cases, t1 is set to t11 ((a), (b) and

(d)). In the second case t1 is set to t21 (case (c)). As can be seen in (a), t2 exists if

t11 ≤ t22 and t12 ≥ t22.

Case 4: two semi-intervals(SP1) ∩ two semi-intervals(SP2)

Let SP1 = [−∞, t11]∪ [t12,∞] and SP2 = [−∞, t21]∪ [t22,∞]. We want to find
S = SP1∩SP2. Here, S will have two semi-intervals, and zero or one segment.
Fig. 9 exposes cases where S contains a segment as well as a case where S
does not contain a segment, and is the inspiration behind Alg. 7.
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0 t_f

0 t_f
(a)

t1 t2

(b)

t1 t2

Fig. 8. Case (a) shows a situation where t1 (with t1 in [0, t f ]) defines the intersec-

tion point. Case (b) depicts a situation where t2 (t1 not in [0, t f ] and t2 in [0, t f ])
defines the intersection point. Note that this figure does not go into all possible

cases of how S (in this case it has two segments) relates to [0, t f ]. Its purpose is

only to explain the general idea of the algorithm.

It is straightforward to note that only the left boundaries of the left bounded
semi-interval and of the possible segment in S are necessary. After calcu-
lating t1 and t2, we set the output parameters (t,color,normal) to the pa-
rameters associated with t1 and then check whether t2 lies in [0, t f ] (note
that we may have either t1≤ t2 or t1 > t2 — see Fig. 10). If that is the case,
and either t2 < t1 or t1 is not in [0, t f ], then we set the resulting parameters
(t,color,normal) to the the parameters associated with t2. At this point, the
output parameters will either contain a value for t that is not in [0, t f ] (since
we initially set t = t1 without checking for that), in which case the pixel will
be discarded in step 6, or a value for t that is in [0, t f ], in which case we
proceed to calculate the depth and shading with o + t · v as the intersection
point.

Note that, with this algorithm, we may end up with a situation as in Fig. 11,
where a pixel is rendered incorrectly. However, in this case the object ex-
tends outside the cell towards the camera along the ray, and thus that pixel
is bound to be rendered correctly when the cells in front of the current cell,
from the point of view of the camera, are rendered.

4 Results

4.1 Performance analysis

Since the difference operation is the costliest of the boolean operations in
our implementation, the majority of the test CSG models chosen were made
mainly with these operations. Additionally, most of the models used in our
testing setup were chosen to be somewhat similar to models that would be
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Algorithm 5 calcIntersection(SP1, SP2)

t1← ∞
if (t11 ≤ t22) and (t12 ≥ t21) then

if (t11 ≥ t21) then
t1← t11
color← P1’s color

6: normal← t11’s normal
else

t1← t21

color← P2’s color
normal← t21’s normal

end if
12: end if

return (t,color,normal)

Algorithm 6 calcIntersection2(SP1, SP2)

t1← ∞
t2← ∞
if t11 < t21 then

t1← t11

end if
6: if t11 > t22 then

t1← t11

else
if t12 ≥ t22 then

t2← t22

end if
12: end if

if t1 ∈ [0, t f ] then
t← t1
color← P1’s color
normal← t11’s normal

else
18: t← t2

color← P2’s color
normal← t22’s normal

end if
return (t,color,normal)

associated with CAD applications, since this is perhaps where CSG models
are most commonly used. In Figs. 12 and 13, we see a few of the different
procedural models used in our testings.

For each of these models we performed a number of measurements to help
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Algorithm 7 calcIntersection3(SP1, SP2)

t1← ∞
t2← ∞
if t22 ≤ t11 then

t2← t22
end if

6: if t22 > t12 then
t2← t22

else
t1← t12

end if
if t21 ≥ t12 then

12: t1← t12
end if
t← t1
color← P1’s color
normal← t12’s normal
if (t2 ∈ [0, t f ]) and ((t2 < t1) or (t1 /∈ [0, t f ]) then

18: t← t2
color← P2’s color
normal← t22’s normal

end if
return (t,color,normal)

S

SP2

SP1

(a) (b) (c)

t1_1 t1_2

t2_1t2_2

t2 t1 t2t1

t2_1

t1_1 t1_2 t1_1 t1_2

t2_1

t2

t2_2 t2_2

Fig. 9. Case (a) shows a situation where S has 1 segment (this situation is defined

by t22 ≤ t11). In this case, the left boundary of the segment (t2) will be set to t22

and t1 will be set to t12.Case (b) also shows a situation where S has 1 segment

(this situation is conditioned by t21 > t12). In this case the left boundary of the

segment (t1) will be set to t12 and t2 will be set to t22. Case (c) shows a situation

where S has no segments (this case is conditioned by t22 > t11 and t21 < t12). In

this case t2 is set to t22 and t1 remains at ∞.

us analyze the scalability of our algorithm with respect to primitive and
octree complexities. We measured: the time to perform the octree subdivi-
sion, S; the setup time, that is, the time to traverse the octree and pass the
parameters to the GPU, but without ray-tracing (i.e., with the fragment and
vertex profiles disabled), TS; the time to traverse the octree and render it,
TR; the time to perform the octree subdivision and render while subdivid-
ing, SR; and the time to render the object in povray Tpov (with the settings
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0 t_f

0 t_f

0 t_f

t1

t1

(a)

(b)

(c)

t2

t2

t2

Fig. 10. Case (a) shows a situation where t2 is in [0, t f ] and t1 (t1=∞) is not. Case

(b) shows a situation where t2 is not in [0, t f ], so t will retain its initial value
(t = t1). Case (c) depicts a situation where t2 is in [0, t f ] and t1 (t1 = ∞) is not.

0 t_f

t1 t2

Fig. 11. Algorithm finds incorrect intersection point (should find o but finds

o+ t1 · v)

detailed in Sect. 4.2).

All tests were performed on four configurations: C1, a Pentium-M 1.4GHz
with 512MB of RAM and a Geforce FX Go5200 GPU; C2, an Athlon 64 3800+
with 1GB of RAM and a Geforce 6800 GT GPU; C3, a Pentium D 2.8Ghz
with 1GB of RAM and a Geforce 7950 GT GPU; and C4, a 2x Quad-core
Xeon 2Ghz with 16GB of RAM and a Quadro FX 5600 GPU (approximately
equivalent to a Geforce 8800). A threshold of 1 pixel was used in all tests for
the spatial subdivision’s stopping criteria. From Table 1 we observe that
the increase in performance from C1 through C4 far surpasses the increase
in CPU performance and CPU/GPU memory bandwidth. To see this, com-
pare the increase in performance in S and TS versus TR in Figs. 14 and 15
- while subdivision performance (CPU) increases only twofold between C1
and C4 and CPU/GPU bus bandwidth remains almost unchanged (TS, even
though CPU performance also impacts this measure), traversal and render-
ing times increase up to 20 times from C1 to C2, 3 times from C2 to C3 and 2
times from C3 to C4.

Also noticeable, is the fact that more complex models show less improve-
ment from C1 through C4 (in both time to traverse and render, TR and time
to subdivide and render, SR). From gpubench analysis, the Quadro FX5600
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Fig. 12. First column: a cylinder subtracted by 100 (CONE100), 200 (CONE200),

500 (CONE500) and 1000 (CONE1000) cones, respectively (CSG tree given by

(Cyl \ Cone) \ Cone ...). Second column: a cylinder subtracted by 100 (CYL100),

200 (CYL200), 500 (CYL500) and 1000 (CYL1000) cylinders, respectively (CSG tree

given by (Cyl \ Cyl) \ Cyl ...).

should have around 2 times the instruction throughput of the Geforce 7950GT
which in turn should have around 4 times the instruction throughput of the
Geforce 6800GT, which finally should have around 20 times the instruction
throughput of the Geforce FX Go5200. In fact, as we have discussed, for the
most part we observe these kind of increases in performance with less com-
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Fig. 13. First row: a cylinder subtracted by 250 spheres (CHEESE250); the union

of 30 cylinders, each subtracted by 10 cylinders, forming a tube (TUBE300).

Second row: a cylinder subtracted by 500 spheres (CHEESE500); the union of
30 cylinders, each subtracted by 20 cylinders (TUBE500). Third row: a cylinder

subtracted by 1000 spheres (CHEESE1000); the union of 50 cylinders, each sub-

tracted by 20 cylinders (TUBE1000). Fourth row: a sphere subtracted by 3 cylin-

ders (WIDGET); object formed by 9 primitives, among which spheres and cylin-

ders (R9). For all the cheese models, CSG tree given by ((Cyl \ Sphere) \ Sphere

...).
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Model
TR SR Tpov

Go5200 6800 Q5600 Go5200 6800 Q5600 PentM1.4 Ath3800

CHEESE250 5501 567 161 5506 631 361 62s 33s

CHEESE500 9070 1402 400 9287 1521 982 157s 134s

CHEESE1000 10776 2086 1001 11243 2314 1627 431s 373s

CYL500 23074 2833 234 23231 3240 1097 159s 136s

CONE1000 34975 4324 762 35233 4820 2472 413s 388s

R9 1626 78 17 1677 80 31 2s 1s

WIDGET 2105 46 17 2102 46 17 2s 1s

TUBE1000 2464 319 84 2466 324 265 3s 2s

Table 1
Results for several of the models in Figs. 13 and 12, in milliseconds (unless other-
wise noted). Each value corresponds to an average over 10 measurements.
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Fig. 14. Time to subdivide (S, in red) and subdivide and render (S/R, in black).
First row: timings for cylinder subtracted by 50, 100, 200 and 500 cylinders

(Fig. 12, second column). Second row: timings for cylinder subtracted by 100,

200, 500 and 1000 cones (Fig. 12, first column). In each row, the first column

presents timings for all configurations, while the second column presents tim-

ings for the 3 faster configurations with more detail.
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Fig. 15. Time to traverse and setup (T/S, in green) and traverse and render (T/R,

in blue). First row: timings for cylinder subtracted by 50, 100, 200 and 500 cylin-

ders (Fig. 12, second column). Second row: timings for cylinder subtracted by

100, 200, 500 and 1000 cones (Fig. 12, first column). In each row, the first column

presents timings for all configurations, while the second column presents tim-

ings for the 3 faster configurations with more detail.

plex models, such as the moderately complex ones (involving up to 500
primitives). This shows up in the TR timing in both Figs. 14 and 15, as well
as in the TR column of Table 1. The fact that for more complex models a more
modest increase in performance is observed can be explained by the fact
that these complex models have very large and complex octrees — whose
subdivision and traversal process takes significant time. Also, for each cell
of the resulting octree, a setup time incurs (the time it takes to pass prim-
itive parameters, etc. to the pixel shader). Thus, for these highly complex
models, the rendering process becomes more CPU and bandwidth bound,
as evidenced by comparing the set up time TS and the subdivision time S,
as the number of primitives increases in Figs. 14 and 15.

While the increase in TR performance when using faster GPUs is noticeable
and follows the increase in instruction throughput for moderately sized
models, we can see from the second column of Fig. 14 that for the configu-

24



Acc
ep

te
d m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

ration with the Quadro FX5600 GPU, the traversal and rendering time (TR)
appears to be limited by the setup time TS. This limitation is possibly pre-
venting that configuration from performing even better. Hence, our results
indicate that for the current state of the art GPUs, the CPU (time to traverse
the octree) and the CPU/GPU bandwidth (time to pass the rendering pa-
rameters to the GPU), which together comprise TS, are becoming limiting
factors in the increase of performance. However, as we argue in Sect. 5, our
method can be continuously adapted to rescale the dependency on GPU
throughput vs. GPU/CPU bandwidth and CPU throughput.

Also, note that factors other than the number of primitives clearly influence
the performance of our approach, among which are: the number of cells of
the object that are actually visible on the screen — the smaller the number of
cells inside the visible screen the faster the rendering is, as the cells that are
not visible will be clipped and no pixel shader will be executed for them;
the area the object occupies on the screen — the larger the area the object oc-
cupies on the screen the larger the number of pixels for which pixel shaders
will be run, hence the slower the rendering is; the object’s depth complex-
ity — every pixel on the screen will have pixel shaders executed for it as
many times as there are cells whose front faces contain that specific pixel,
hence the larger the depth complexity the slower the rendering is. Isolating
the impact of each of these effects is considerably hard as there are usually
a combination of these in effect.

4.2 Correctness analysis

We performed a qualitative correctness analysis by comparing renderings
of all of our models produced by our approach against those produced by
povray, when used with comparable quality settings (i.e., +Q3 — without
inter-object shadows or anti-aliasing). In all cases tested, there were no vis-
ible discrepancies. In Fig. 16, we expose some of these renderings side by
side. Our method is able to produce the same visual quality as povray, and
at the same time it does so significantly faster (in some cases by more than
one order of magnitude).

5 Conclusions

We have presented a method for rendering CSG objects composed of con-
vex primitives that tries to get the best of both worlds — CPU and GPU —
without suffering (at least as much as in previous methods) the curse of
memory bandwidth limitations. In our approach, spatial subdivision of the
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Fig. 16. First column: CSG models rendered using our approach. Second column:

CSG models rendered using povray. Note that while a change in bias exists,

there are no noticeable artifacts when comparing our renderings to the povray

renderings. Images have been adjusted in brightness and constrast for compari-
son purposes.
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CSG object is performed on the CPU, while parts of the CSG object that lie
inside each cell of the resulting octree are ray-traced in the GPU.

Experimental results have demonstrated that with the latest GPUs state
of the art performance is achieved, when comparing to results directly re-
ported in other papers. Results have also shown that our algorithm is dom-
inantly GPU instruction throughput bound for up to moderately complex
objects (up to 500 primitives). Moreover, while the process becomes more
CPU and bandwidth bound for more complex models, between each of
the configurations tested, an improvement more significant than both the
respective CPU throughput and the memory bandwidth increase is ob-
served, even for the more complex models. This is a remarkable fact since
instruction throughput has essentially doubled with every new generation
of GPUs whereas bandwidth improvement has increased at a considerably
lower pace over the last few generations of GPUs.

While, as GPUs become more powerful, it might seem that the process
seems to be geared towards becoming entirely CPU and bus bandwidth
bound ( as our results for the Quadro FX 5600 seem to indicate), it will
be possible to efficiently implement the ray-tracing of boolean operations
of more than two primitives with newer GPUs, potentially even with the
Quadro FX 5600. Thus, it will be possible to slightly adapt our method to
rescale the dependency on memory bandwidth/CPU instruction through-
put vs GPU instruction throughput towards using more GPU instruction
throughput. With a continuous improvement (ray-tracing of boolean op-
erations of more and more primitives on the GPU becoming feasible) the
corresponding octrees would become less and less complex, consequently
requiring less parameter passing to the GPU, decreasing the bandwidth re-
quirements and allowing models with far greater complexity to be rendered
at realistic rates as well as allowing the rendering of moderately sized mod-
els to remain GPU instruction throughput limited. In short, it is possible to
adapt our approach to re-balance the load between the CPU and the GPU.
In our view, this is an important direction of future work for our approach.
For example, it would be interesting to investigate ways to dynamically
change the concept of “simple enough” depending on the CPU/GPU load
balance.

As one direction of future work, using more adaptive structures such as
kd-trees would allow for better spatial subdivision — since cells could then
be divided right on points of order 3 or larger, such as in Fig. 1, decreas-
ing the complexity of the subdivision structures. Parallelizing the spatial
subdivision is an easy modification to our method that would also make
the subdivision process much more efficient, since CPUs seem to be geared
towards having ever more cores (e.g., with such a modification, the sub-
division S and subdivision and rendering SR times with the 2x Quadcore
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Xeon 2GHz configuration would be much faster).

We also plan to include other geometric primitives into the system, such as
half-spaces, height maps, cubics, quartics, and surfaces defined by Bezier
patches. The use of linear half-space in CSG would make possible for ex-
ample the representation of polyhedral surfaces. Height maps are useful
for the representation of terrain data, and higher order implicits enable the
description of more complex smooth surfaces. There has been a lot of recent
work in this direction that can be incorporated into our framework. Some
relevant references include [20,21,11].

Inter-object shadows can be incorporated in a two-pass approach, render-
ing to a shadow-buffer first, from the point of view of the light source. One
may also look at performing occlusion queries to exclude occluded cells
from the rendering process, and thus reduce the dependency of the render-
ing times on the depth complexity of the object.

Finally, it would be interesting to compare the performance of implemen-
tations of our approach using pixel shaders to a similar one using a more
generic framework for GPU programming such as NVIDIA’s CUDA, as that
framework could provide more efficient ways of passing CSG model pa-
rameters to the GPU, further reducing the dependency of our method on
bus bandwidth: in our current implementation, everytime the CSG object
inside a given cell is raytraced, the full parameters for all the primitives
that determine that object (e.g. radii, colors, centers, etc) are passed to the
GPU. One way to overcome this limitation would be to assign IDs to all the
primitives that compose the CSG object, upload their parameters once onto
the GPU’s memory and when handling a given cell simply pass the prim-
itives’ ids instead of the full parameters. It is worth noticing that recently
geometry instancing and bindable uniforms have become available and it is
likely possible to implement this functionality using these extensions, but it
might be the case that a framework like CUDA provides tools to make this
task easier.
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A Exerpts of Cg Code

In this appendix, we provide Cg source code for vertex and pixel shaders
that ray-trace the difference of two spheres. Given the description of our
algorithm in the previous sections, modifying these to handle other primi-
tives or other boolean operations should be fairly trivial.

A.1 Common vertex shader (used with all our pixel shaders)

vfconn vp_main(appdata IN, uniform float4x4 ModelViewI,
uniform float4x4 ModelViewProj, uniform float3 light)

{
vfconn OUT;
// Output light position - object space
OUT.l.xyz = light.xyz;
OUT.l.w = 1.0f;
// Output camera position - object space
float3 viewpos = mul(ModelViewI, float4(0,0,0,1)).xyz;
OUT.v.w = 1.0f;
OUT.v.xyz = viewpos.xyz;
// Output position - object space
OUT.OPos.xyz = IN.position.xyz;
// Output position - clip space
OUT.HPos = mul(ModelViewProj, IN.position);
// Output color
OUT.Col0.xyzw = IN.color.xyzw;
return OUT;

}
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A.2 Pixel shader to ray-trace the difference of two spheres

void fp_main(in vfconn IN, out float4 color : COLOR0, out float depth : DEPTH,
uniform float4x4 ModelViewProj, uniform float radius1,
uniform float radius2, uniform float3 center1,
uniform float3 center2, uniform float3 ll,
uniform float3 ur, uniform float3 color1, uniform float3 color2)

{
float3 o = IN.OPos.xyz;
float t;
half3 norm_l;
float3 norm_v;
float3 v = o - IN.v.xyz;
intsec res;
float3 obj_color;
norm_v = normalize(v);
// Perform ray-cell intersection
float max_t = find_max_t(o,norm_v,ll,ur);
// Intersect ray with first sphere
intsec res1 = ray_intersect_sphere(center1, radius1, o, norm_v, max_t);
// Intersect ray with second sphere
intsec res2 = ray_intersect_sphere(center2, radius2, o, norm_v, max_t);
// Complement second ray-primitive intersection set,
// since this is a difference operation
res2.normal1 = -res2.normal1;
res2.normal2 = -res2.normal2;
// Perform intersection of ray-primitive result sets res1 and res2
// Note that this corresponds to case 2 in Sect. 3.3.4
res = calc_intersection2(res1, res2, max_t);
if (res.t1 < -EPS)
{

// object extends outside the cell (through faces of the
// cell facing the camera - clip object)
discard;

}
if ((res.t1-max_t)>EPS)
{

// object extends outside the cell (through faces of the
// cell not facing the camera - clip object)
discard;

}
// Calculate Depth
float4 vtemp;
vtemp.xyz = o + res.t1 * norm_v;
vtemp.w = 1.0f;
float4 depth_tmp = mul(ModelViewProj, vtemp);
depth = 0.5 + (depth_tmp.z/depth_tmp.w)/2;
// Perform Shading
half3 normal = normalize(res.normal);
norm_l = normalize(IN.l.xyz - vtemp.xyz);
norm_v = normalize(IN.v.xyz - vtemp.xyz);
if (res.object==false)

obj_color=color1;
else

obj_color=color2;
color.xyz = calc_lighting(normal, norm_l, norm_v, obj_color);
color.w = 1.0f;

}

A.3 Intersection of ray-primitive result sets - case 2

intsec calc_intersection2(intsec i1, intsec i2, float mt)
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{
float t1, t2;
intsec res;
t1 = INFTY;
t2 = INFTY;
if (i1.t1 < i2.t1)
{

t1 = i1.t1;
}
if (i1.t1 > i2.t2)
{

t1 = i1.t1;
}

else if (i1.t2 >= i2.t2)
{

t2 = i2.t2;
}
if ((t1 >= -EPS) && (t1 <= (mt+EPS)))
{

res.object=0;
res.t1 = t1;
res.normal = i1.normal;

}
else
{

res.object=1;
res.t1 = t2;
res.normal = i2.normal2;

}
return res;

}

A.4 Ray-Sphere intersection

intsec ray_intersect_sphere(float3 center, float radius, float3 o, float3 v)
{

intsec res;
res.t1=INFTY;
res.t2=INFTY;
o = o - center;
float oo = dot(o,o);
float ov = dot(o,v);
float delta = (ov * ov - oo + radius * radius);
if (delta >= 0.0f)
{

delta = sqrt(delta);
res.t1 = -ov - delta;
res.t2 = -ov + delta;
res.normal = o + (res.t1) * v;
res.normal2 = o + (res.t2) * v;

}
return res;

}

A.5 Ray-Cell intersection

float find_max_t(float3 o, float3 v, float3 ll, float3 ur)
{

float3 v_ll=(ll-o)/v;
float3 v_ur=(ur-o)/v;
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return min(min(max(v_ll.x,v_ur.x), max(v_ll.y,v_ur.y)), max(v_ll.z,v_ur.z));
}

A.6 Auxiliary data structures

struct intsec
{

fixed object;
float t1;
float t2;
half3 normal;
half3 normal2;

};
struct vfconn
{

float4 HPos : POSITION;
float4 OPos : TEXCOORD1;
float4 Col0 : COLOR0;
float4 l : TEXCOORD2;
float4 v : TEXCOORD0;

};
struct appdata
{

float4 position : POSITION;
float4 color : COLOR0;

};
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