Good Approximations for the Relative Neighbourhood Graph

Diogo Vieira Andrade (PUC-Rio)
Luiz Henrique de Figueiredo (IMPA)

Outline

- Computational morphology
- The relative neighbourhood graph
- Computing the relative neighbourhood graph
- The Urquhart graph
- Results
- Conclusion
- Open problems

Computational morphology

Computational morphology = computational extraction of perceptually meaningful structure from dot patterns.

Toussaint (1980) introduced RNG as tool for computational morphology.

The relative neighbourhood graph

$S=$ set of points in the plane.
The edges in $\mathrm{RNG}(S)$ are defined by $p, q \in S$ with empty lune.

The relative neighbourhood graph

$S=$ set of points in the plane.
The edges in $\operatorname{RNG}(S)$ are defined by $p, q \in S$ with empty lune.

Computing the relative neighbourhood graph

- Brute-force algorithm from definition takes time $O\left(n^{3}\right)$.
- Restriction to $\mathrm{DT}(S)$ gives extraction in time $O\left(n^{2}\right)$.
- Supowit (1983) extracts in time $O(n \log n)$.
- Jaromczyk \& Kowaluk (1987) extract in time $O(n \alpha(n, n))$.
- Jaromczyk, Kowaluk \& Yao (1991?) extract in time $O(n)$.
- Lingas (1994) extracts in time $O(n)$
\diamond simple algorithm, never implemented.

The Urquhart graph

- Idea by Urquhart (1980): test only Delaunay neighbours!
\diamond remove longest edge from each Delaunay triangle
\diamond common mistake!
\diamond new graph: Urquhart graph $\quad \mathrm{RNG}(S) \subseteq \mathrm{UG}(S) \subseteq \mathrm{GG}(S)$
- Toussaint (1980) proposed UG (S) as approximation to $\operatorname{RNG}(S)$
- Our theme: how good is this approximation?
\diamond How close is $\mathrm{UG}(S)$ to $\operatorname{RNG}(S)$?
- compare number of edges.
\diamond Is UG (S) good for computational morphology?
- see pictures!

$U G \neq R N G$

Results: random points in a square

Results: random points in a square

RNG 1241 edges
UG 1263 edges

Results: random points in a square

RNG 1241 edges
UG $1263=1241+22$ edges

Results: random points on a spiral

RNG

Results: random points on a spiral

RNG 1291 edges

UG 1301 edges

Results: random points on a spiral

RNG 1291 edges

UG $1301=1291+10$ edges

Results: random point on line art: earth

RNG

GG

Results: random point on line art: earth

RNG 1089 edges
UG 1116 edges

Results: random point on line art: earth

RNG 1089 edges
UG $\quad 1116=1089+27$ edges

Results: random point on line art: man

Results: random point on line art: man

RNG 663 edges
UG 682 edges

Results: random point on line art: man

RNG 663 edges

UG $682=663+19$ edges

Conclusion

- UG (S) good approximation to RNG (S) :
\diamond only about 2% additional edges for random samples
- Easy to extract $\mathrm{UG}(S)$ from $\mathrm{DT}(S)$ in linear time.
- Good, free, robust, optimal implementations of DT (S) at netlib:
\diamond Triangle, by Jonathan Richard Shewchuk
\diamond sweep2, by Steve Fortune

Open problems

- Compare implementations
\diamond Supowit (1983)
\diamond Lingas (1994)
- Probabilistic results à la Devroye (1988):
$\diamond E_{\mathrm{GG}}(N) \sim 2 N$
$\diamond E_{\mathrm{RNG}}(N) \sim(1.27+o(1)) N$
$\diamond E_{\mathrm{UG}}(N) \sim ? ? ? N$

Thanks

- Godfried Toussaint
- Therese Biedl
- CNPq (Brazilian agency)
- You all for your attention!

