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Motivation

Basic problems in computer graphics and geometric modeling
typically reduce to solving systems of nonlinear equations:

f1(x1, . . . , xn) = 0

· · ·
fm(x1, . . . , xn) = 0

y2 = x3 − x
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Motivation – rendering an implicit surface with ray casting

Implicit surface

h(x, y, z) = 0, h : R3 → R

Ray

r(t) = e+ t · v = (x(t), y(t), z(t)), t ∈ [0,∞)

Ray intersects surface when

f(t) = h(r(t)) = 0

First intersection occurs at smallest zero of f in [0,∞)

Need all zeros for rendering CSG models

4(x4 + (y2 + z2)2) + 17x2(y2 + z2)− 20(x2 + y2 + z2) + 17 = 0
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Motivation – plotting an implicit curve

Implicit curve

f(x, y) = 0, f : R2 → R

0.004 + 0.110x− 0.177y − 0.174x2 + 0.224xy − 0.303y2

−0.168x3 + 0.327x2y − 0.087xy2 − 0.013y3 + 0.235x4

−0.667x3y + 0.745x2y2 − 0.029xy3 + 0.072y4 = 0
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Motivation – intersecting two parametric surfaces

Parametric surfaces

g1 : Ω1 ⊂ R2 → R3

g2 : Ω2 ⊂ R2 → R3

Intersection

g1(u1, v1)− g2(u2, v2) = 0

x1(u1, v1)− x2(u2, v2) = 0

y1(u1, v1)− y2(u2, v2) = 0

z1(u1, v1)− z2(u2, v2) = 0

surface intersection method developed in [4], with the same
output as Algorithm 1. Based on the listed running time, we
can see that Algorithm 1 is much faster than the method
developed in [4]. The computational speed is raised over
two orders of magnitude.

Moreover, the fifth column of Table 1 is the time taken
by the algorithm developed in Section 5, including strip

thinning, intersection point generation, and accuracy
improvement, which is performed in CPU. In addition,
the precision for the intersection curve before and after
accuracy improvement is recorded in the sixth and
seventh columns, respectively. Finally, the last column
lists the number of iterations in the accuracy improvement.
In the examples illustrated in Figs. 7, 9, 10, and 11, because
the bottom-level resolutions are so high that the precisions
of the intersections reach a desirable level (i.e., 10!6), we
do not perform accuracy improvement for them.

In Table 2, we list the experimental data for the method
developed in [2]. In this table, the second column is the
bottom-level resolution, the third column is the running
time, and the fourth column lists the intersection precision.
From Tables 1 and 2, we can see that the running time of
our method and the method in [2] is comparable.
However, because the method in [2] needs to store a
precomputed bounding box hierarchy, and it costs much
more memory than our method, the highest bottom-level
resolution reached by the method in [2] is 512" 512 "
512" 512. Higher resolution makes the storage of bound-
ing box hierarchy out of memory. At the resolution of
512 " 512" 512" 512, the precision of intersection can
attain only 10!4 level. Referring to Table 1, our method can
reach higher resolution 2; 048" 2; 048" 2; 048" 2; 048, and
higher precision level 10!6. Moreover, the method in [2]
lacks strategy for handling singular cases, such as
tangential intersection (see Figs. 9 and 10), and intersection
with two intersecting curves (see Fig. 7), so the data for
examples of Figs. 7, 9, and 10 are not available. However,
our method is more robust and able to deal with these
singular cases successfully.
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Fig. 5. Two B-spline surfaces intersect with one curve. (a) Result by our
algorithm. (b), (c) Result of the algorithm in [4] in the two parametric
domains.

Fig. 6. Two B-spline surfaces intersect with two separate curves.
(a) Result by our algorithm. (b), (c) Result of the algorithm in [4] in the
two parametric domains.

Fig. 7. Two B-spline surfaces intersect with two intersecting curves.
(a) Result by our algorithm. (b), (c) Result of the algorithm in [4] in the
two parametric domains.

Hongwei Lin, Yang Qin, Hongwei Liao, Yunyang Xiong
“Affine Arithmetic-Based B-Spline Surface Intersection with GPU Acceleration”

IEEE TVCG, 2014
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Can probe the global behavior of mathematical functions

Provides reliable bounds for the values of a function over
whole regions of its domain

Avoids costly and unreliable point sampling

Leads naturally to adaptive algorithms

Both micro and macro scales
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Leads naturally to adaptive algorithms

Both micro and macro scales

2009



Interval arithmetic

Represent quantities as intervals

x ∼ [a, b] =⇒ x ∈ [a, b]

Operate with intervals generating other intervals

[a, b] + [c, d] = [a+ c, b+ d]

[a, b]× [c, d] = [min(ac, ad, bc, bd),max(ac, ad, bc, bd)]

[a, b] / [c, d] = [a, b]× [1/d, 1/c]

[a, b]2 = [min(a2, b2),max(a2, b2)] if 0 /∈ [a, b]

[a, b]2 = [0,max(a2, b2)] if 0 ∈ [a, b]

exp [a, b] = [exp(a), exp(b)]

Automatic extensions for complicated expressions with operator overloading



Interval arithmetic

Every expression f has an interval extension F :

xi ∈ Xi =⇒ f(x1, . . . , xn) ∈ F (X1, . . . , Xn)

Reliable range estimates without point sampling

F (X) ⊇ f(X) = {f(x) : x ∈ X}

In particular:

0 6∈ F (X) =⇒ 0 6∈ f(X)

=⇒ f(x) = 0 has no solution in X

This is a computational proof
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Interval arithmetic

Given a system of nonlinear equations

f1(x1, . . . , xn) = 0

· · ·
fm(x1, . . . , xn) = 0

and interval extensions
F1, . . . , Fm

there are no solutions in a box X = X1 × · · · ×Xn ⊆ Rn if

0 /∈ Fk(X) for some k

There may be solutions in X if

0 ∈ Fk(X) for all k



Interval arithmetic

Given a system of nonlinear inequalities

f1(x1, . . . , xn) ≥ 0

· · ·
fm(x1, . . . , xn) ≥ 0

and interval extensions
F1, . . . , Fm

there are no solutions in a box X = X1 × · · · ×Xn ⊆ Rn if

maxFk(X) < 0 for some k

There may be solutions in X if

maxFk(X) ≥ 0 for all k



Interval probing of implicit curve

y2 − x3 + x = 0

X = [−2,−1]

Y = [1, 2]

X3 = [−8,−1]

−X3 = [1, 8]

−X3 +X = [−1, 7]

exact = [0, 6]

Y 2 = [1, 4]

Y 2 −X3 +X = [0, 11]

exact = [1, 10]



Interval probing of implicit curve

y2 − x3 + x = 0

X = [−2,−1]

Y = [1, 2]

X3 = [−8,−1]

−X3 = [1, 8]

−X3 +X = [−1, 7]

exact = [0, 6]

Y 2 = [1, 4]

Y 2 −X3 +X = [0, 11]

exact = [1, 10]



Interval probing of implicit curve

y2 − x3 + x = 0

X = [−2,−1]

Y = [1, 2]

X3 = [−8,−1]

−X3 = [1, 8]

−X3 +X = [−1, 7]

exact = [0, 6]

Y 2 = [1, 4]

Y 2 −X3 +X = [0, 11]

exact = [1, 10]



Interval probing of implicit curve

y2 − x3 + x = 0

X = [−2,−1]

Y = [1, 2]

X3 = [−8,−1]

−X3 = [1, 8]

−X3 +X = [−1, 7] exact = [0, 6]

Y 2 = [1, 4]

Y 2 −X3 +X = [0, 11] exact = [1, 10]

Interval estimates not tight, but improve as intervals shrink



Interval probing of implicit curve

y2 − x3 + x = 0

X = [−2,−1]

Y = [1, 2]

X3 = [−8,−1]
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−X3 +X = [−1, 7] exact = [0, 6]
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Y 2 −X3 +X = [0, 11] exact = [1, 10]

Interval estimates not tight, but improve as intervals shrink =⇒ divide-and-conquer



Interval probing of implicit curve

y2 − x3 + x = 0

X × Y = [−2,−1]× [1, 2]

F (X,Y ) = [0, 11] maybe

f(X,Y ) = [1, 10] no
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Interval probing of implicit curve

y2 − x3 + x = 0

X × Y = [−2,−1.5]× [1.5, 2]

F (X,Y ) = [3.625, 10.5] no



Interval probing of implicit curve
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Interval probing of implicit curve

y2 − x3 + x = 0

X × Y = [−2,−1]× [1, 2]

F (X,Y ) = [0.5, 10.5] no

f(X,Y ) = [1, 10] no



Adaptive domain subdivision

To solve f(x) = 0 in Ω ⊆ Rn

call explore(Ω)

procedure explore(X)
if 0 6∈ F (X) then

discard X
elseif small(X) then

output X
else

X1, . . . , Xk ← subdivide(X)
for each i do explore(Xi)

end
end

Suffern–Fackerell (1991), Snyder (1992)
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“ When you have eliminated the impossible,
whatever remains, however improbable,

must be the truth.”
— Sherlock Holmes in The Sign of Four
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Implicit curves

F inclusion function for f

procedure explore(X)
if 0 6∈ F (X) then

discard X
elseif small(X) then

output X
else

X1, . . . , Xk ← subdivide(X)
for each i do explore(Xi)

end
end

spatial adaption
Suffern–Fackerell (1991), Snyder (1992)

G inclusion function for grad f

procedure explore(X)
if 0 6∈ F (X) then

discard X
elseif small(X) or small(G(X)) then

approx(X)
else

X1, . . . , Xk ← subdivide(X)
for each i do explore(Xi)

end
end

geometric adaption
Lopes–Oliveira–Figueiredo (2002)
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discard X
elseif small(X) then

output X
else

X1, . . . , Xk ← subdivide(X)
for each i do explore(Xi)

end
end

spatial adaption
Suffern–Fackerell (1991), Snyder (1992)

G inclusion function for grad f

procedure explore(X)
if 0 6∈ F (X) then

discard X
elseif small(X) or small(G(X)) then

approx(X)
else

X1, . . . , Xk ← subdivide(X)
for each i do explore(Xi)

end
end

geometric adaption
Lopes–Oliveira–Figueiredo (2002)
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more applications



Implicit regions

Given by systems of nonlinear inequalities

f1(x, y) ≥ 0

· · ·
fm(x, y) ≥ 0

procedure explore(X)
if maxF (X) < 0 then

discard X
elseif small(X) then

output X
else

X1, . . . , Xk ← subdivide(X)
for each i do explore(Xi)

end
end
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· · ·
fm(x, y) ≥ 0

procedure explore(X)
if maxF (X) < 0 then

discard X
elseif small(X) then

output X
else

X1, . . . , Xk ← subdivide(X)
for each i do explore(Xi)

end
end



Implicit manifolds

Given by systems of nonlinear equations

f1(x, y) = 0

· · ·
fm(x, y) = 0

procedure explore(X)
if 0 /∈ F (X) then

discard X
elseif small(X) then

output X
else

X1, . . . , Xk ← subdivide(X)
for each i do explore(Xi)

end
end
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Implicit surfaces Paiva–Lopes–Lewiner–Figueiredo (2006)

Figure 3. The effect of the geometric criterion on the smile surface (y−x2−y2+1)4+(x2+y2+z2)4−1 = 0.
The mesh is uniform without this criterion (left), while it tracks regions of higher curvature when kmax

increases, here from kmax = 0.5 (middle) to kmax = 0.95 (right).

4.1 Building the octree

Our algorithm starts with the whole domain Ω, and as-
signs it to the root of the octree. Then, at each step of the
subdivision, it checks whether the cell n, having domain the
box Bn, must be subdivided. If so, the algorithm recurses
on the subdivisions of n. A cell must be subdivided if it
satisfies one of the three following criteria: connected com-
ponent criterion, topology criterion and the geometry crite-
rion. These criteria are derived from the interval evaluation
F (Bn) and ∇F (Bn) of both the function f and its gradient
∇f on the box Bn.

Connected component criterion. This criterion selects
the cells of the octree that may contain a patch of the im-
plicit surface, and discards the cells that surely do not inter-
sect the surface. As detailed in Section 3, this can be tested
robustly with the interval evaluation F (Bn) of f on the box
Bn:

if 0 /∈ F (Bn) then discard(n)

This test is robust, meaning that it is guaranteed not to
discard any connected component of the implicit surface
f−1(0) in Ω: one of its points (x, y, z) would be contained
in a cell n ((x, y, z) ∈ Bn), and thus 0 = f(x, y, z) ∈
f(Bn) ⊆ F (Bn), which avoids discarding n.

Topology criterion. A connected component of the im-
plicit surface can have arbitrary genus, in particular it may
contain tunnels. The previous criterion alone does not guar-
antee to recover tunnels. However, combined with the
topology criterion, it can safely discard the empty parts of
these tunnels. If a box B contains a tunnel, then the gra-
dient of f varies inside B from one vector (nx, ny, nz) at
point (x, y, z) to its opposite (−nx,−ny,−nz) on the fac-
ing point [3]. Therefore, the coordinates Ix, Iy, Iz of the
interval estimation of ∇f contain opposite values. Since

Ix, Iy, Iz are intervals, 0 ∈ Ix,y,z . The topology criterion is
thus:

if (0, 0, 0) ∈ ∇F (Bn) then subdivide(n)

Geometry criterion. To approximate correctly the geom-
etry of the implicit surface with a reduced number of trian-
gles, we need to allow small triangles only in regions of high
curvature. The curvature can actually be estimated from
∇F (Bn): the curvature reflects the variation of the gradi-
ent. Therefore, high curvatures implies that the coordinates
(Ix, Iy, Iz) of ∇F (Bn) are wide intervals. Given a user
defined threshold kmax and choosing Diam(Ix, Iy, Iz) =
max {|Ix|, |Iy|, |Iz|} for measuring the gradient variation,
the geometry criterion is:

if Diam
(

∇F (Bn)
∥∇F (Bn)∥

)
> kmax then subdivide(n)

Note that the topology criterion guarantees that 0 /∈
∥∇F (Bn)∥, which validates the above expression. The pa-
rameter kmax actually weights the geometric adaptation, as
illustrated on Figure 3.

Algorithm end. The above criteria may induce a large
number of subdivisions, even infinite if the implicit sur-
face has infinite genus (which is a highly non generic case).
Moreover, since the interval evaluation F (B) only con-
tains the exact image f(B) with conservative rounding er-
ror, subdivisions may be required on empty areas when nu-
merical precision decreases. In practice, the algorithm sub-
divides the octree until a given maximal level, which may
correspond to the size of the pixel for rendering applica-
tions, minimal size of the triangles for geometry process-
ing, or numerical precision for simulation. However, the
above criteria still point out which parts of the implicit sur-
face are not guaranteed, while guaranteeing the approxima-
tion of the others. This robust behaviour allows stopping

XIX Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI'06)
0-7695-2686-1/06 $20.00  © 2006

track regions of high curvature



Implicit surfaces Paiva–Lopes–Lewiner–Figueiredo (2006)

Robust adaptive meshes for implicit surfaces

Afonso Paiva Hélio Lopes Thomas Lewiner
Department of Mathematics, PUC–Rio, Brazil

Luiz Henrique de Figueiredo
IMPA, Rio de Janeiro, Brazil

Figure 1. Toric isosurface extraction: our algorithm extracts a valid surface with adaptive triangula-
tion. It guarantees the green parts of the surface, and the ambiguity of the other parts is resolved
with a small number of refinements.

Abstract

This work introduces a robust algorithm for computing
good polygonal approximations of implicit surfaces, where
robustness entails recovering the exact topology of the im-
plicit surface. Furthermore, the approximate triangle mesh
adapts to the geometry and to the topology of the real im-
plicit surface. This method generates an octree subdivided
according to the interval evaluation of the implicit func-
tion in order to guarantee the robustness, and to the inter-
val automatic differentiation in order to adapt the octree to
the geometry of the implicit surface. The triangle mesh is
then generated from that octree through an enhanced dual
marching.

Keywords: Implicit Surface, Dual Marching Cubes, Robust
Algorithms, Geometric Modelling.

1 Introduction

Implicit surfaces provide powerful primitives for geo-
metric modelling. However, computing good polygonal ap-
proximations remains an important problem. An implicit
surface is the set of solutions of an equation f(x, y, z) = 0,

where f : Ω ⊆ R3 → R. For well-behaved functions f ,
this set is indeed a manifold surface.

The simplest and most flexible polygonal approximation
abides triangle meshes, since they are easy to represent ef-
ficiently and they suit also well for rendering with current
graphics hardware. The criteria for good approximations
involve robustness and adaptation. Robustness means that
the mesh captures exactly the topology of the surface, guar-
anteeing the representation of each connected component
in Ω and their genus. Adaptation means that, with a reduced
number of triangles, the geometry of the surface is de-
scribed efficiently. In particular, the mesh should place large
triangles in regions of low surface curvature and smaller tri-
angles in regions of high surface curvature. Moreover, the
triangles should have a good aspect ratio since thin triangles
(also known as slivers) induce numerical instability for geo-
metric processing, in particular for rendering and derivative
estimations.

In this paper, we describe an algorithm that computes
a robust and adaptive triangular approximation for an im-
plicit surface given by a formula. The algorithm combines
interval arithmetic and automatic differentiation to ensure
both robustness and adaptation. The algorithm first explores
the domain Ω adaptively using an octree to locate the sur-

XIX Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI'06)
0-7695-2686-1/06 $20.00  © 2006

flag regions of possible topological ambiguity



Implicit surfaces in 4D Bordignon–Sá–Lopes–Pesco–Figueiredo (2013)

seed points for point-based rendering



Offsets of parametric curves Oliveira–Figueiredo (2003)



Offsets of parametric curves Oliveira–Figueiredo (2003)



Offsets of parametric curves Oliveira–Figueiredo (2003)



Bisectors of parametric curves Oliveira–Figueiredo (2003)



Medial axis of parametric curves Oliveira–Figueiredo (2003)



Beam casting implicit surfaces Ganacim–Figueiredo–Nehab (2011)

8/27/11 11Beam casting implicit surfaces on the GPU with interval arithmetic 11

● Simulates a beam of rays that 
covers one or more pixels 

Beam casting

Introduction

Avoids sampling errors

also Flórez et al. (2008)
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● Regions far from the surface are 
eliminated by large beams

● Regions near the surface require 
more accuracy and therefore 
smaller beams

Image space adaptation

Our method
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Fractals Paiva–Figueiredo–Stolfi (2006)

Hénon attractor



Julia sets Fig–Nehab–Oliveira–Stolfi (2016)
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but . . .



Overestimation

0.004+0.110x−0.177y−0.174x2+0.224xy−0.303y2

−0.168x3+0.327x2y−0.087xy2−0.013y3+0.235x4

−0.667x3y+0.745x2y2−0.029xy3+0.072y4 = 0



Overestimation

0.004+0.110x−0.177y−0.174x2+0.224xy−0.303y2

−0.168x3+0.327x2y−0.087xy2−0.013y3+0.235x4

−0.667x3y+0.745x2y2−0.029xy3+0.072y4 = 0

IA can’t see correlations between operands



The dependency problem in interval arithmetic

f(x) = (10 + x)(10− x) for x ∈ [−2, 2]

10 + x = [8, 12]

10− x = [8, 12]

(10 + x)(10− x) = [64, 144] diam = 80

exact range = [96, 100] diam = 4



The dependency problem in interval arithmetic

f(x) = (10 + x)(10− x) for x ∈ [−u, u]

10 + x = [10− u, 10 + u]

10− x = [10− u, 10 + u]

(10 + x)(10− x) = [(10− u)2, (10 + u)2] diam = 40u

exact range = [100− u2, 100] diam = u2



affine arithmetic



Affine arithmetic and its applications to computer graphics Comba–Stolfi (1993)



Affine arithmetic Comba–Stolfi (1993)

AA represents a quantity x with an affine form

x̂ = x0 + x1ε1 + · · ·+ xnεn

Noise symbols εi : independent, vary in [−1,+1] but are otherwise unknown

Can compute arbitrary formulas on affine forms
Use affine approximations for non-affine operations
New noise symbols created during computation

AA generalizes IA:

x ∼ x̂ =⇒ x ∈ [x0 − δ, x0 + δ] for δ = |x1|+ · · ·+ |xn|
x ∈ [a, b] =⇒ x ∼ x̂ = x0 + x1ε1 for x0 = (b+ a)/2, x1 = (b− a)/2

AA automatically exploits first-order correlations in complex expressions
=⇒ better interval estimates!
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AA represents a quantity x with an affine form
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=⇒ better interval estimates!



The dependency problem in interval arithmetic – with AA

f(x) = (10 + x)(10− x) for x ∈ [−u, u], x = 0 + u ε1

10 + x = 10− u ε1
10− x = 10 + u ε1

(10 + x)(10− x) = 100− u2 ε2
range = [100− u2, 100 + u2] diam = 2u2

exact range = [100− u2, 100] diam = u2

AA



The dependency problem in interval arithmetic – with AA

f(x) = (10 + x)(10− x) for x ∈ [−u, u], x = 0 + u ε1

10 + x = 10− u ε1
10− x = 10 + u ε1

(10 + x)(10− x) = 100− u2 ε2
range = [100− u2, 100 + u2] diam = 2u2

exact range = [100− u2, 100] diam = u2

IA



replacing IA with AA



IA versus AA for plotting implicit curves Comba–Stolfi (1993)

x2 + y2 + xy − (xy)2/2− 1/4 = 0

IA: 246 exact: 66 AA: 70



Interval method for intersecting two parametric surfaces Gleicher–Kass (1992)

Parametric surfaces
g1 : D1 ⊂ R2 → R3

g2 : D2 ⊂ R2 → R3

Intersection
g1(u1, v1)− g2(u2, v2) = 0

Interval test
G1(U1, V1) ∩G2(U2, V2) 6= ∅

Intersect bounding boxes in space
Discard if no intersection
Subdivide until tolerance
String boxes into curves



Replacing IA with AA for surface intersection
tensor product Bézier surfaces of degree (p, q)

s(u, v) =

p∑

i=0

q∑

j=0

aijB
p
i (u)Bq

j (v), Bn
i (t) =

(
n

i

)
ti (1− t)n−i

, u, v ∈ [0, 1]

(2, 1) (3, 3)



Replacing IA with AA for surface intersection Figueiredo (1996)

IA

AA



Replacing IA with AA for surface intersection Figueiredo (1996)

IA

AA



Replacing IA with AA for surface intersection Figueiredo (1996)

IA

AA



exploiting geometry in AA



Geometry of affine forms

Affine forms that share noise symbols are not independent:

x̂ = x0 + x1ε1 + · · ·+ xnεn

ŷ = y0 + y1ε1 + · · ·+ ynεn

Joint range is a zonotope: centrally symmetric convex polygon

Image of hypercube [−1, 1]n under affine transformation

[
x
y

]
=

[
x0
y0

]
+

[
x1 · · · xn
y1 · · · yn

]


ε1
...
εn




Minkowski sum of point and line segments

[
x
y

]
=

[
x0
y0

]
+

[
x1
y1

]
ε1 + · · ·+

[
xn
yn

]
εn
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Approximating parametric curves

Parametric curve

C = γ(I), γ : I → R2

Compute good bounding rectangle for

P = γ(T ), T ⊆ I

Write

γ(t) = (x(t), y(t))

Find joint range of x̂(t̂) and ŷ(t̂) with AA

Use bounding rectangle of zonotope
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Approximating parametric curves Figueiredo–Stolfi–Velho (2003)
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Distance fields for parametric curves Figueiredo–Stolfi–Velho (2003)



Ray casting implicit surfaces

Implicit surface

h(x, y, z) = 0, h : R3 → R

Ray

r(t) = e+ t · v = (x(t), y(t), z(t)), t ∈ [0,∞)

Ray intersects surface when

f(t) = h(r(t)) = 0

First intersection occurs at smallest zero of f in [0,∞)



Ray casting implicit surfaces

procedure interval-bisection([a, b])
if 0 ∈ F ([a, b]) then

c← (a+ b)/2
if (b− a) < ε then

return c
else

interval-bisection([a, c]) ← try left half first!
interval-bisection([c, b])

end
end

end

Call interval-bisection([0, t∞]) to find the first zero



Ray casting implicit surfaces Custatis–Figueiredo–Gattass (1999)

root must lie in smaller interval

quadratic convergence

AA exploits linear correlations in

f(t) = h(r(t))

r(t) = (x(t), y(t), z(t))
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Ray casting implicit surfaces Custatis–Figueiredo–Gattass (1999)
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quadratic convergence
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Natural domains

IA

Bounding Implicit Curves with Strips on ⇤

On axis-aligned rectangles: we need to evaluate f (⇤) with AA

a b

c

d

(x   , y )0 0

x1

y2 "1 =
x � x0

x1
"2 =

y � y0

y2

Geometric bounds using the AA form of f̂
the graph of z = f (x , y) over ⇤ is sandwiched between the planes:

z = f0 + f1"1 + f2"2 ± f3

AA

Bounding Implicit Curves with Strips on ⌃

On parallelograms:
evaluate f (⌃) with AA ) write "1 and "2 in terms of x and y

(x   , y )0 0

v1

v2

v1 = (x1, y1) v2 = (x2, y2)

x̂ = x0 + x1"1 + x2"2 ŷ = y0 + y1"1 + y2"2

In matrix form


x

y

�
=


x0

y0

�
+


x1 x2

y1 y2

�
·

"1
"2

�

(x̂, ŷ) = (x0, y0) + v1ε1 + v2ε2



AA on triangles

Bounding Implicit Curves with Strips on ⌃
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AA on triangles
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In matrix form


x

y

�
=


x0

y0

�
+


x1 x2

y1 y2

�
·

"1
"2

�
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AA on triangles
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AA on triangles
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AA on triangles

Bounding Implicit Curves with Strips on ⌃
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Implicit curves on triangles Nascimento–Paiva–Figueiredo–Stolfi (2014)Our Adaptive Method

procedure Explore (4)
⌃1,⌃2,⌃3  Parallelograms (4)
f̂i  f (⌃i ) with AA
if 0 2 [f̂i ] for some i then

wi  width of f̂ in ⌃i

if wi  ✏user , for all i then
Approximate (4)

else
4i  Subdivide (4)
for each i , Explore (4i )

end
end

end



Implicit curves on triangulations Nascimento–Paiva–Figueiredo–Stolfi (2014)

Results

level 0

(xy + cos(x + y))(xy + sin(x + y)) = 0



Implicit curves on triangulations Nascimento–Paiva–Figueiredo–Stolfi (2014)

Results

level 4

#4in = 1032
#4out = 3897

CPU time = 454 msec

(xy + cos(x + y))(xy + sin(x + y)) = 0



Implicit curves on triangulations Nascimento–Paiva–Figueiredo–Stolfi (2014)



Conclusion

Interval methods

• can reliably probe the global behavior of functions without sampling
• lead naturally to robust adaptive algorithms
• useful in many domains

Affine arithmetic is a useful tool for interval methods

• AA can replace IA transparently
• AA more accurate than IA
• AA locally more expensive than IA but globally more efficient
• AA provides geometric information that can be exploited
• AA can be used on triangles

Lots more to be done!
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