SIBGRAPI ${ }^{1}$

Interval methods

for computer graphics and geometric modeling

Luiz Henrique de Figueiredo
impa

Motivation

Basic problems in computer graphics and geometric modeling typically reduce to solving systems of nonlinear equations:

$$
\begin{gathered}
f_{1}\left(x_{1}, \ldots, x_{n}\right)=0 \\
\ldots \\
f_{m}\left(x_{1}, \ldots, x_{n}\right)=0
\end{gathered}
$$

Motivation

Basic problems in computer graphics and geometric modeling typically reduce to solving systems of nonlinear equations:

$$
\begin{gathered}
f_{1}\left(x_{1}, \ldots, x_{n}\right)=0 \\
\ldots \\
f_{m}\left(x_{1}, \ldots, x_{n}\right)=0
\end{gathered}
$$

$$
y^{2}=x^{3}-x
$$

Motivation

Basic problems in computer graphics and geometric modeling typically reduce to solving systems of nonlinear inequalities:

$$
\begin{gathered}
f_{1}\left(x_{1}, \ldots, x_{n}\right) \geq 0 \\
\ldots \\
f_{m}\left(x_{1}, \ldots, x_{n}\right) \geq 0
\end{gathered}
$$

$$
y^{2} \leq x^{3}-x
$$

Motivation - rendering an implicit surface with ray casting
Implicit surface

$$
h(x, y, z)=0, \quad h: \mathbf{R}^{3} \rightarrow \mathbf{R}
$$

Ray

$$
r(t)=e+t \cdot v=(x(t), y(t), z(t)), \quad t \in[0, \infty)
$$

Ray intersects surface when

$$
f(t)=h(r(t))=0
$$

First intersection occurs at smallest zero of f in $[0, \infty)$
Need all zeros for rendering CSG models

Motivation - rendering an implicit surface with ray casting
Implicit surface

$$
h(x, y, z)=0, \quad h: \mathbf{R}^{3} \rightarrow \mathbf{R}
$$

Ray

$$
r(t)=e+t \cdot v=(x(t), y(t), z(t)), \quad t \in[0, \infty)
$$

Ray intersects surface when

$$
f(t)=h(r(t))=0
$$

First intersection occurs at smallest zero of f in $[0, \infty)$
Need all zeros for rendering CSG models

$$
4\left(x^{4}+\left(y^{2}+z^{2}\right)^{2}\right)+17 x^{2}\left(y^{2}+z^{2}\right)-20\left(x^{2}+y^{2}+z^{2}\right)+17=0
$$

Motivation - plotting an implicit curve
Implicit curve

$$
f(x, y)=0, \quad f: \mathbf{R}^{2} \rightarrow \mathbf{R}
$$

Motivation - plotting an implicit curve
Implicit curve

$$
f(x, y)=0, \quad f: \mathbf{R}^{2} \rightarrow \mathbf{R}
$$

$$
\begin{gathered}
0.004+0.110 x-0.177 y-0.174 x^{2}+0.224 x y-0.303 y^{2} \\
-0.168 x^{3}+0.327 x^{2} y-0.087 x y^{2}-0.013 y^{3}+0.235 x^{4} \\
-0.667 x^{3} y+0.745 x^{2} y^{2}-0.029 x y^{3}+0.072 y^{4}=0
\end{gathered}
$$

Motivation - plotting an implicit curve
Implicit curve

$$
f(x, y)=0, \quad f: \mathbf{R}^{2} \rightarrow \mathbf{R}
$$

$$
\begin{gathered}
0.004+0.110 x-0.177 y-0.174 x^{2}+0.224 x y-0.303 y^{2} \\
-0.168 x^{3}+0.327 x^{2} y-0.087 x y^{2}-0.013 y^{3}+0.235 x^{4} \\
-0.667 x^{3} y+0.745 x^{2} y^{2}-0.029 x y^{3}+0.072 y^{4}=0
\end{gathered}
$$

Motivation - plotting an implicit curve
Implicit curve

$$
f(x, y)=0, \quad f: \mathbf{R}^{2} \rightarrow \mathbf{R}
$$

$$
\begin{gathered}
0.004+0.110 x-0.177 y-0.174 x^{2}+0.224 x y-0.303 y^{2} \\
-0.168 x^{3}+0.327 x^{2} y-0.087 x y^{2}-0.013 y^{3}+0.235 x^{4} \\
-0.667 x^{3} y+0.745 x^{2} y^{2}-0.029 x y^{3}+0.072 y^{4}=0
\end{gathered}
$$

Motivation - intersecting two parametric surfaces
Parametric surfaces

$$
\begin{aligned}
& g_{1}: \Omega_{1} \subset \mathbf{R}^{2} \rightarrow \mathbf{R}^{3} \\
& g_{2}: \Omega_{2} \subset \mathbf{R}^{2} \rightarrow \mathbf{R}^{3}
\end{aligned}
$$

Intersection

$$
g_{1}\left(u_{1}, v_{1}\right)-g_{2}\left(u_{2}, v_{2}\right)=0
$$

Motivation - intersecting two parametric surfaces

Parametric surfaces

$$
\begin{aligned}
& g_{1}: \Omega_{1} \subset \mathbf{R}^{2} \rightarrow \mathbf{R}^{3} \\
& g_{2}: \Omega_{2} \subset \mathbf{R}^{2} \rightarrow \mathbf{R}^{3}
\end{aligned}
$$

Intersection

$$
\begin{aligned}
& g_{1}\left(u_{1}, v_{1}\right)-g_{2}\left(u_{2}, v_{2}\right)=0 \\
& x_{1}\left(u_{1}, v_{1}\right)-x_{2}\left(u_{2}, v_{2}\right)=0 \\
& y_{1}\left(u_{1}, v_{1}\right)-y_{2}\left(u_{2}, v_{2}\right)=0 \\
& z_{1}\left(u_{1}, v_{1}\right)-z_{2}\left(u_{2}, v_{2}\right)=0
\end{aligned}
$$

Motivation - intersecting two parametric surfaces

Parametric surfaces

$$
\begin{aligned}
& g_{1}: \Omega_{1} \subset \mathbf{R}^{2} \rightarrow \mathbf{R}^{3} \\
& g_{2}: \Omega_{2} \subset \mathbf{R}^{2} \rightarrow \mathbf{R}^{3}
\end{aligned}
$$

Intersection

$$
\begin{aligned}
& g_{1}\left(u_{1}, v_{1}\right)-g_{2}\left(u_{2}, v_{2}\right)=0 \\
& x_{1}\left(u_{1}, v_{1}\right)-x_{2}\left(u_{2}, v_{2}\right)=0 \\
& y_{1}\left(u_{1}, v_{1}\right)-y_{2}\left(u_{2}, v_{2}\right)=0 \\
& z_{1}\left(u_{1}, v_{1}\right)-z_{2}\left(u_{2}, v_{2}\right)=0
\end{aligned}
$$

Motivation

Basic problems in computer graphics and geometric modeling typically reduce to solving systems of nonlinear equations:

$$
\begin{gathered}
f_{1}\left(x_{1}, \ldots, x_{n}\right)=0 \\
\ldots \\
f_{m}\left(x_{1}, \ldots, x_{n}\right)=0
\end{gathered}
$$

Motivation

Basic problems in computer graphics and geometric modeling typically reduce to solving systems of nonlinear equations:

$$
\begin{gathered}
f_{1}\left(x_{1}, \ldots, x_{n}\right)=0 \\
\ldots \\
f_{m}\left(x_{1}, \ldots, x_{n}\right)=0
\end{gathered}
$$

Low-dimensional solutions

Motivation

Basic problems in computer graphics and geometric modeling typically reduce to solving systems of nonlinear equations:

$$
\begin{gathered}
f_{1}\left(x_{1}, \ldots, x_{n}\right)=0 \\
\ldots \\
f_{m}\left(x_{1}, \ldots, x_{n}\right)=0
\end{gathered}
$$

Low-dimensional solutions
\Longrightarrow sampling costly and unreliable

Motivation

Basic problems in computer graphics and geometric modeling typically reduce to solving systems of nonlinear equations:

$$
\begin{gathered}
f_{1}\left(x_{1}, \ldots, x_{n}\right)=0 \\
\ldots \\
f_{m}\left(x_{1}, \ldots, x_{n}\right)=0
\end{gathered}
$$

Low-dimensional solutions
\Longrightarrow sampling costly and unreliable
Interval methods provide robust adaptive solutions

interval arithmetic

Interval arithmetic

Introduced to improve reliability of numerical computations through automated a posteriori error analysis of both rounding errors in floating-point arithmetic and measurement errors in input data

Ramon E. Moore (1929-2015)

Interval arithmetic

Introduced to improve reliability of numerical computations through automated a posteriori error analysis of both rounding errors in floating-point arithmetic and measurement errors in input data

Interval arithmetic

Introduced to improve reliability of numerical computations through automated a posteriori error analysis of both rounding errors in floating-point arithmetic and measurement errors in input data

Methods
and Applications of Interval Analysis Ramon E. Moore

Interval arithmetic

Introduced to improve reliability of numerical computations through automated a posteriori error analysis of both rounding errors in floating-point arithmetic and measurement errors in input data

Introduction to
INTERVAL ANALYSIS

Interval arithmetic in computer graphics and geometric modeling

Can probe the global behavior of mathematical functions
Provides reliable bounds for the values of a function over whole regions of its domain

Avoids costly and unreliable point sampling
Leads naturally to adaptive algorithms
Both micro and macro scales

Interval arithmetic in computer graphics and geometric modeling

Can probe the global behavior of mathematical functions
Provides reliable bounds for the values of a function over whole regions of its domain

Avoids costly and unreliable point sampling
Leads naturally to adaptive algorithms

JOHN M. SNYDER
Foveword by James T. Kairya

Interval arithmetic in computer graphics and geometric modeling

Can probe the global behavior of mathematical functions
Provides reliable bounds for the values of a function over whole regions of its domain

Avoids costly and unreliable point sampling
Leads naturally to adaptive algorithms
Both micro and macro scales

Interval arithmetic in computer graphics and geometric modeling

Can probe the global behavior of mathematical functions
Provides reliable bounds for the values of a function over whole regions of its domain

Avoids costly and unreliable point sampling
Leads naturally to adaptive algorithms
Both micro and macro scales

Interval arithmetic

Represent quantities as intervals

$$
x \sim[a, b] \Longrightarrow x \in[a, b]
$$

Operate with intervals generating other intervals

$$
\begin{array}{rll}
{[a, b]+[c, d]} & =[a+c, b+d] \\
{[a, b] \times[c, d]} & =[\min (a c, a d, b c, b d), \max (a c, a d, b c, b d)] \\
{[a, b] /[c, d]} & =[a, b] \times[1 / d, 1 / c] & \\
{[a, b]^{2}} & =\left[\min \left(a^{2}, b^{2}\right), \max \left(a^{2}, b^{2}\right)\right] & \text { if } 0 \notin[a, b] \\
{[a, b]^{2}} & =\left[0, \max \left(a^{2}, b^{2}\right)\right] & \text { if } 0 \in[a, b] \\
\exp [a, b] & =[\exp (a), \exp (b)] &
\end{array}
$$

Automatic extensions for complicated expressions with operator overloading

Interval arithmetic

Every expression f has an interval extension F :

$$
x_{i} \in X_{i} \Longrightarrow f\left(x_{1}, \ldots, x_{n}\right) \in F\left(X_{1}, \ldots, X_{n}\right)
$$

Reliable range estimates without point sampling

$$
F(X) \supseteq f(X)=\{f(x): x \in X\}
$$

In particular:

$$
\begin{aligned}
0 \notin F(X) & \Longrightarrow 0 \notin f(X) \\
& \Longrightarrow f(x)=0 \text { has no solution in } X
\end{aligned}
$$

Interval arithmetic

Every expression f has an interval extension F :

$$
x_{i} \in X_{i} \Longrightarrow f\left(x_{1}, \ldots, x_{n}\right) \in F\left(X_{1}, \ldots, X_{n}\right)
$$

Reliable range estimates without point sampling

$$
F(X) \supseteq f(X)=\{f(x): x \in X\}
$$

In particular:

$$
\begin{aligned}
0 \notin F(X) & \Longrightarrow 0 \notin f(X) \\
& \Longrightarrow f(x)=0 \text { has no solution in } X
\end{aligned}
$$

Interval arithmetic

Every expression f has an interval extension F :

$$
x_{i} \in X_{i} \Longrightarrow f\left(x_{1}, \ldots, x_{n}\right) \in F\left(X_{1}, \ldots, X_{n}\right)
$$

Reliable range estimates without point sampling

$$
F(X) \supseteq f(X)=\{f(x): x \in X\}
$$

In particular:

$$
\begin{aligned}
0 \notin F(X) & \Longrightarrow 0 \notin f(X) \\
& \Longrightarrow f(x)=0 \text { has no solution in } X
\end{aligned}
$$

Interval arithmetic

Every expression f has an interval extension F :

$$
x_{i} \in X_{i} \Longrightarrow f\left(x_{1}, \ldots, x_{n}\right) \in F\left(X_{1}, \ldots, X_{n}\right)
$$

Reliable range estimates without point sampling

$$
F(X) \supseteq f(X)=\{f(x): x \in X\}
$$

In particular:

$$
\begin{aligned}
0 \notin F(X) & \Longrightarrow 0 \notin f(X) \\
& \Longrightarrow f(x)=0 \text { has no solution in } X
\end{aligned}
$$

Interval arithmetic

Every expression f has an interval extension F :

$$
x_{i} \in X_{i} \Longrightarrow f\left(x_{1}, \ldots, x_{n}\right) \in F\left(X_{1}, \ldots, X_{n}\right)
$$

Reliable range estimates without point sampling

$$
F(X) \supseteq f(X)=\{f(x): x \in X\}
$$

In particular, even if $F(X) \supsetneq f(X)$:

$$
\begin{aligned}
0 \notin F(X) & \Longrightarrow 0 \notin f(X) \\
& \Longrightarrow f(x)=0 \text { has no solution in } X
\end{aligned}
$$

$$
F(X) \supsetneq f(X)
$$

Interval arithmetic

Every expression f has an interval extension F :

$$
x_{i} \in X_{i} \Longrightarrow f\left(x_{1}, \ldots, x_{n}\right) \in F\left(X_{1}, \ldots, X_{n}\right)
$$

Reliable range estimates without point sampling

$$
F(X) \supseteq f(X)=\{f(x): x \in X\}
$$

In particular, even if $F(X) \supsetneq f(X)$:

$$
\begin{aligned}
0 \notin F(X) & \Longrightarrow 0 \notin f(X) \\
& \Longrightarrow f(x)=0 \text { has no solution in } X
\end{aligned}
$$

$$
F(X) \supsetneq f(X)
$$

This is a computational proof

Interval arithmetic

Given a system of nonlinear equations

$$
\begin{gathered}
f_{1}\left(x_{1}, \ldots, x_{n}\right)=0 \\
\ldots \\
f_{m}\left(x_{1}, \ldots, x_{n}\right)=0
\end{gathered}
$$

and interval extensions

$$
F_{1}, \ldots, F_{m}
$$

there are no solutions in a box $X=X_{1} \times \cdots \times X_{n} \subseteq \mathbf{R}^{n}$ if

$$
0 \notin F_{k}(X) \quad \text { for some } k
$$

There may be solutions in X if

$$
0 \in F_{k}(X) \quad \text { for all } k
$$

Interval arithmetic

Given a system of nonlinear inequalities

$$
\begin{gathered}
f_{1}\left(x_{1}, \ldots, x_{n}\right) \geq 0 \\
\ldots \\
f_{m}\left(x_{1}, \ldots, x_{n}\right) \geq 0
\end{gathered}
$$

and interval extensions

$$
F_{1}, \ldots, F_{m}
$$

there are no solutions in a box $X=X_{1} \times \cdots \times X_{n} \subseteq \mathbf{R}^{n}$ if

$$
\max F_{k}(X)<0 \quad \text { for some } k
$$

There may be solutions in X if

$$
\max F_{k}(X) \geq 0 \quad \text { for all } k
$$

Interval probing of implicit curve

$$
\begin{aligned}
y^{2} & -x^{3}+x=0 \\
X & =[-2,-1] \\
Y & =[1,2]
\end{aligned}
$$

Interval probing of implicit curve

$$
\begin{aligned}
y^{2} & -x^{3}+x=0 \\
X & =[-2,-1] \\
Y & =[1,2] \\
X^{3} & =[-8,-1] \\
-X^{3} & =[1,8] \\
-X^{3}+X & =[-1,7]
\end{aligned}
$$

Interval probing of implicit curve

$$
\begin{aligned}
y^{2} & -x^{3}+x=0 \\
X & =[-2,-1] \\
Y & =[1,2] \\
X^{3} & =[-8,-1] \\
-X^{3} & =[1,8] \\
-X^{3}+X & =[-1,7] \\
Y^{2} & =[1,4] \\
Y^{2}-X^{3}+X & =[0,11]
\end{aligned}
$$

Interval probing of implicit curve

$$
\begin{aligned}
y^{2} & -x^{3}+x=0 \\
X & =[-2,-1] \\
Y & =[1,2] \\
X^{3} & =[-8,-1] \\
-X^{3} & =[1,8] \\
-X^{3}+X & =[-1,7] \quad \text { exact }=[0,6] \\
Y^{2} & =[1,4]
\end{aligned} \quad \text { exact }=[1,10]
$$

Interval estimates not tight, but improve as intervals shrink

Interval probing of implicit curve

$$
\begin{aligned}
y^{2} & -x^{3}+x=0 \\
X & =[-2,-1] \\
Y & =[1,2] \\
X^{3} & =[-8,-1] \\
-X^{3} & =[1,8] \\
-X^{3}+X & =[-1,7] \quad \text { exact }=[0,6] \\
Y^{2} & =[1,4]
\end{aligned} \quad \text { exact }=[1,10]
$$

Interval estimates not tight, but improve as intervals shrink \Longrightarrow divide-and-conquer

Interval probing of implicit curve

$$
\begin{aligned}
& y^{2}-x^{3}+x=0 \\
& X \times Y=[-2,-1] \times[1,2] \\
& F(X, Y)=[0,11] \quad \text { maybe } \\
& f(X, Y)=[1,10] \quad \text { no }
\end{aligned}
$$

Interval probing of implicit curve

$$
y^{2}-x^{3}+x=0
$$

$$
X \times Y=[-2,-1] \times[1,2]
$$

$$
F(X, Y)=[0,11]
$$

$$
f(X, Y)=[1,10]
$$

maybe no

Interval probing of implicit curve

$$
y^{2}-x^{3}+x=0
$$

$$
X \times Y=[-2,-1] \times[1,2]
$$

$$
F(X, Y)=[0,11]
$$

$$
f(X, Y)=[1,10]
$$

maybe no

Interval probing of implicit curve

$$
y^{2}-x^{3}+x=0
$$

$$
X \times Y=[-2,-1.5] \times[1.5,2]
$$

$$
F(X, Y)=[3.625,10.5]
$$

Interval probing of implicit curve

$$
y^{2}-x^{3}+x=0
$$

$$
X \times Y=[-1.5,-1] \times[1.5,2]
$$

$$
F(X, Y)=[1.75,6.375]
$$

Interval probing of implicit curve

$$
y^{2}-x^{3}+x=0
$$

$$
X \times Y=[-2,-1.5] \times[1,1.5]
$$

$$
F(X, Y)=[2.375,8.75]
$$

Interval probing of implicit curve

$$
y^{2}-x^{3}+x=0
$$

$$
X \times Y=[-1.5,-1] \times[1,1.5]
$$

$$
F(X, Y)=[0.5,4.625]
$$

Interval probing of implicit curve

$$
y^{2}-x^{3}+x=0
$$

$$
X \times Y=[-2,-1] \times[1,2]
$$

$$
F(X, Y)=[0.5,10.5]
$$

$$
f(X, Y)=[1,10]
$$

Adaptive domain subdivision

To solve $f(x)=0$ in $\Omega \subseteq \mathbf{R}^{n}$ call explore (Ω)
procedure explore (X)
if $0 \notin F(X)$ then discard X
elseif small (X) then output X
else
$X_{1}, \ldots, X_{k} \leftarrow \operatorname{subdivide}(X)$ for each i do explore $\left(X_{i}\right)$
end
end

Suffern-Fackerell (1991), Snyder (1992)

Adaptive domain subdivision

```
To solve f(x)=0 in \Omega\subseteq\mp@subsup{\mathbf{R}}{}{n}
call explore(\Omega)
procedure explore( }X\mathrm{ )
    if 0\not\inF(X) then
        discard X
    elseif small( }X\mathrm{ ) then
        output X
    else
        X1,\ldots, Xk}\leftarrow\leftarrow\mathrm{ subdivide ( }X\mathrm{ )
        for each i do explore( (Xi)
    end
end
```


"When you have eliminated the impossible, whatever remains, however improbable, must be the truth."

Adaptive domain subdivision

To solve $f(x)=0$ in $\Omega \subseteq \mathbf{R}^{n}$ call explore (Ω)

```
procedure explore( }X\mathrm{ )
    if 0\not\inF(X) then
        discard }
    elseif small( }X\mathrm{ ) then
        output X
    else
        X ,\ldots., X 
        for each i do explore( }\mp@subsup{X}{i}{}
    end
end
```

Suffern-Fackerell (1991), Snyder (1992)

Adaptive domain subdivision

To solve $f(x)=0$ in $\Omega \subseteq \mathbf{R}^{n}$ call explore (Ω)
procedure explore (X)
if $0 \notin F(X)$ then discard X
elseif small (X) then output X
else
$X_{1}, \ldots, X_{k} \leftarrow \operatorname{subdivide}(X)$ for each i do explore $\left(X_{i}\right)$
end
end

Suffern-Fackerell (1991), Snyder (1992)

Adaptive domain subdivision

To solve $f(x)=0$ in $\Omega \subseteq \mathbf{R}^{n}$ call explore (Ω)
procedure explore (X)
if $0 \notin F(X)$ then discard X
elseif small (X) then output X
else
$X_{1}, \ldots, X_{k} \leftarrow \operatorname{subdivide}(X)$ for each i do explore $\left(X_{i}\right)$
end
end

Suffern-Fackerell (1991), Snyder (1992)

Adaptive domain subdivision

To solve $f(x)=0$ in $\Omega \subseteq \mathbf{R}^{n}$ call explore (Ω)
procedure explore (X)
if $0 \notin F(X)$ then discard X
elseif small (X) then output X
else
$X_{1}, \ldots, X_{k} \leftarrow \operatorname{subdivide}(X)$ for each i do explore $\left(X_{i}\right)$
end
end

Suffern-Fackerell (1991), Snyder (1992)

Implicit curves

Implicit curves

Implicit curves

Implicit curves

Implicit curves

Implicit curves

Implicit curves

Implicit curves

Implicit curves

Implicit curves

F inclusion function for f

```
procedure explore( }X\mathrm{ )
    if 0\not\inF(X) then
        discard }
    elseif small( }X)\mathrm{ then
        output X
    else
        X1,\ldots, X 
        for each i do explore( }\mp@subsup{X}{i}{}
    end
end
```

spatial adaption
Suffern-Fackerell (1991), Snyder (1992)

Implicit curves

F inclusion function for f
procedure explore (X)
if $0 \notin F(X)$ then discard X
elseif small (X) then output X
else
$X_{1}, \ldots, X_{k} \leftarrow$ subdivide (X) for each i do explore $\left(X_{i}\right)$
end
end
spatial adaption
Suffern-Fackerell (1991), Snyder (1992)
G inclusion function for $\operatorname{grad} f$

```
procedure explore(X)
    if 0\not\inF(X) then
        discard }
    elseif small(X) or small(G(X)) then
        approx(X)
    else
        X1,\ldots, X 
        for each }i\mathrm{ do explore( }\mp@subsup{X}{i}{}
    end
end
```

geometric adaption
Lopes-Oliveira-Figueiredo (2002)

Implicit curves - spatial adaption

Implicit curves - geometric adaption

Lopes-Oliveira-Figueiredo (2002)

Implicit curves - geometric adaption

Implicit curves - geometric adaption

more applications

Implicit regions

Given by systems of nonlinear inequalities

$$
\begin{aligned}
f_{1}(x, y) & \geq 0 \\
\ldots & \\
f_{m}(x, y) & \geq 0
\end{aligned}
$$

Implicit regions

Given by systems of nonlinear inequalities

$$
\begin{aligned}
f_{1}(x, y) & \geq 0 \\
\ldots & \\
f_{m}(x, y) & \geq 0
\end{aligned}
$$

procedure explore (X)
if $\max F(X)<0$ then discard X
elseif $\operatorname{small}(X)$ then output X
else
$X_{1}, \ldots, X_{k} \leftarrow$ subdivide (X) for each i do explore $\left(X_{i}\right)$
end
end

Implicit manifolds

Given by systems of nonlinear equations

$$
\begin{aligned}
f_{1}(x, y) & =0 \\
\cdots & \\
f_{m}(x, y) & =0
\end{aligned}
$$

procedure explore (X)
if $0 \notin F(X)$ then discard X
elseif $\operatorname{small}(X)$ then output X
else
$X_{1}, \ldots, X_{k} \leftarrow \operatorname{subdivide}(X)$ for each i do explore $\left(X_{i}\right)$
end
end

Implicit regions

Implicit regions

GrafEq

Implicit surfaces

Paiva-Lopes-Lewiner-Figueiredo (2006)

track regions of high curvature

Implicit surfaces

Paiva-Lopes-Lewiner-Figueiredo (2006)

flag regions of possible topological ambiguity

Implicit surfaces in 4D
Bordignon-Sá-Lopes-Pesco-Figueiredo (2013)

seed points for point-based rendering

Offsets of parametric curves

Offsets of parametric curves

Oliveira-Figueiredo (2003)

Offsets of parametric curves

Bisectors of parametric curves

Medial axis of parametric curves

Beam casting implicit surfaces

Avoids sampling errors also Flórez et al. (2008)

Beam casting implicit surfaces

- Simulates a beam of rays that covers one or more pixels

Avoids sampling errors
also Flórez et al. (2008)

Fractals

Julia sets

Julia sets

Julia sets

but ...

Overestimation

$$
\begin{aligned}
& 0.004+0.110 x-0.177 y-0.174 x^{2}+0.224 x y-0.303 y^{2} \\
& -0.168 x^{3}+0.327 x^{2} y-0.087 x y^{2}-0.013 y^{3}+0.235 x^{4} \\
& -0.667 x^{3} y+0.745 x^{2} y^{2}-0.029 x y^{3}+0.072 y^{4}=0
\end{aligned}
$$

Overestimation

$$
\begin{aligned}
& 0.004+0.110 x-0.177 y-0.174 x^{2}+0.224 x y-0.303 y^{2} \\
& -0.168 x^{3}+0.327 x^{2} y-0.087 x y^{2}-0.013 y^{3}+0.235 x^{4} \\
& -0.667 x^{3} y+0.745 x^{2} y^{2}-0.029 x y^{3}+0.072 y^{4}=0
\end{aligned}
$$

IA can't see correlations between operands

The dependency problem in interval arithmetic

$$
\begin{array}{rll}
f(x)=(10+x) & (10-x) \text { for } x \in[-2,2] \\
10+x & =[8,12] & \\
10-x & =[8,12] & \\
(10+x)(10-x) & =[64,144] & \text { diam }=80 \\
\text { exact range } & =[96,100] & \text { diam }=4
\end{array}
$$

The dependency problem in interval arithmetic

$$
\begin{array}{rlr}
f(x)=(10+x)(10-x) \text { for } x \in[-u, u] \\
10+x & =[10-u, 10+u] & \\
10-x & =[10-u, 10+u] & \\
(10+x)(10-x) & =\left[(10-u)^{2},(10+u)^{2}\right] & \text { diam }=40 u \\
\text { exact range } & =\left[100-u^{2}, 100\right] & \text { diam }=u^{2}
\end{array}
$$

affine arithmetic

Affine arithmetic and its applications to computer graphics Comba-Stolfi (1993)

Editores: Luiz Henrique de Figueiredo e Jonas de Miranda Comes

Affine arithmetic

AA represents a quantity x with an affine form

$$
\hat{x}=x_{0}+x_{1} \varepsilon_{1}+\cdots+x_{n} \varepsilon_{n}
$$

Noise symbols ε_{i} : independent, vary in $[-1,+1]$ but are otherwise unknown
Can compute arbitrary formulas on affine forms
Use affine approximations for non-affine operations
New noise symbols created during computation
AA generalizes IA:

$$
\begin{array}{rll}
x \sim \hat{x} & \Longrightarrow x \in\left[x_{0}-\delta, x_{0}+\delta\right] & \text { for } \\
\quad \delta=\left|x_{1}\right|+\cdots+\left|x_{n}\right| \\
x \in[a, b] & \Longrightarrow x \sim \hat{x}=x_{0}+x_{1} \varepsilon_{1} & \text { for }
\end{array} x_{0}=(b+a) / 2, x_{1}=(b-a) / 2
$$

Affine arithmetic

AA represents a quantity x with an affine form

$$
\hat{x}=x_{0}+x_{1} \varepsilon_{1}+\cdots+x_{n} \varepsilon_{n}
$$

Noise symbols ε_{i} : independent, vary in $[-1,+1]$ but are otherwise unknown
Can compute arbitrary formulas on affine forms
Use affine approximations for non-affine operations
New noise symbols created during computation
AA generalizes IA:

$$
\begin{array}{rlll}
x \sim \hat{x} & \Longrightarrow x \in\left[x_{0}-\delta, x_{0}+\delta\right] & \text { for } & \delta=\left|x_{1}\right|+\cdots+\left|x_{n}\right| \\
x \in[a, b] & \Longrightarrow x \sim \hat{x}=x_{0}+x_{1} \varepsilon_{1} & \text { for } & x_{0}=(b+a) / 2, x_{1}=(b-a) / 2
\end{array}
$$

AA automatically exploits first-order correlations in complex expressions

Affine arithmetic

AA represents a quantity x with an affine form

$$
\hat{x}=x_{0}+x_{1} \varepsilon_{1}+\cdots+x_{n} \varepsilon_{n}
$$

Noise symbols ε_{i} : independent, vary in $[-1,+1]$ but are otherwise unknown
Can compute arbitrary formulas on affine forms
Use affine approximations for non-affine operations
New noise symbols created during computation
AA generalizes IA:

$$
\begin{array}{rlll}
x \sim \hat{x} & \Longrightarrow x \in\left[x_{0}-\delta, x_{0}+\delta\right] & \text { for } & \delta=\left|x_{1}\right|+\cdots+\left|x_{n}\right| \\
x \in[a, b] & \Longrightarrow x \sim \hat{x}=x_{0}+x_{1} \varepsilon_{1} & \text { for } & x_{0}=(b+a) / 2, x_{1}=(b-a) / 2
\end{array}
$$

AA automatically exploits first-order correlations in complex expressions
\Longrightarrow better interval estimates!

The dependency problem in interval arithmetic - with AA

$$
\begin{array}{rlrl}
f(x)=(10+x) & (10-x) \text { for } x \in[-u, u], & x=0+u \varepsilon_{1} \\
10+x & =10-u \varepsilon_{1} & & \\
10-x & =10+u \varepsilon_{1} & & \\
(10+x)(10-x) & =100-u^{2} \varepsilon_{2} & & \\
\text { range } & =\left[100-u^{2}, 100+u^{2}\right] & & \text { diam }=2 u^{2} \\
\text { exact range } & =\left[100-u^{2}, 100\right] & & \text { diam }=u^{2}
\end{array}
$$

The dependency problem in interval arithmetic - with AA

$$
\begin{array}{rlrl}
f(x)=(10+x) & (10-x) \text { for } x \in[-u, u], & x=0+u \varepsilon_{1} \\
10+x & =10-u \varepsilon_{1} & & \\
10-x & =10+u \varepsilon_{1} & & \\
(10+x)(10-x) & =100-u^{2} \varepsilon_{2} & & \\
\text { range } & =\left[100-u^{2}, 100+u^{2}\right] & & \text { diam }=2 u^{2} \\
\text { exact range } & =\left[100-u^{2}, 100\right] & & \text { diam }=u^{2}
\end{array}
$$

replacing IA with AA

IA versus AA for plotting implicit curves

Comba-Stolfi (1993)

$$
x^{2}+y^{2}+x y-(x y)^{2} / 2-1 / 4=0
$$

Interval method for intersecting two parametric surfaces
Parametric surfaces

$$
\begin{aligned}
& g_{1}: D_{1} \subset \mathbf{R}^{2} \rightarrow \mathbf{R}^{3} \\
& g_{2}: D_{2} \subset \mathbf{R}^{2} \rightarrow \mathbf{R}^{3}
\end{aligned}
$$

Intersection

$$
g_{1}\left(u_{1}, v_{1}\right)-g_{2}\left(u_{2}, v_{2}\right)=0
$$

Interval test

$$
G_{1}\left(U_{1}, V_{1}\right) \cap G_{2}\left(U_{2}, V_{2}\right) \neq \varnothing
$$

Intersect bounding boxes in space Discard if no intersection Subdivide until tolerance String boxes into curves

Replacing IA with AA for surface intersection

tensor product Bézier surfaces of degree (p, q)

$$
s(u, v)=\sum_{i=0}^{p} \sum_{j=0}^{q} a_{i j} B_{i}^{p}(u) B_{j}^{q}(v), \quad B_{i}^{n}(t)=\binom{n}{i} t^{i}(1-t)^{n-i}, \quad u, v \in[0,1]
$$

Replacing IA with AA for surface intersection

IA

Replacing IA with AA for surface intersection

IA

Replacing IA with AA for surface intersection

IA

exploiting geometry in AA

Geometry of affine forms

Affine forms that share noise symbols are not independent:

$$
\begin{aligned}
\hat{x} & =x_{0}+x_{1} \varepsilon_{1}+\cdots+x_{n} \varepsilon_{n} \\
\hat{y} & =y_{0}+y_{1} \varepsilon_{1}+\cdots+y_{n} \varepsilon_{n}
\end{aligned}
$$

Joint range is a zonotope: centrally symmetric convex polygon Image of hypercube $[-1,1]^{n}$ under affine transformation

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
x_{0} \\
y_{0}
\end{array}\right]+\left[\begin{array}{lll}
x_{1} & \cdots & x_{n} \\
y_{1} & \cdots & y_{n}
\end{array}\right]\left[\begin{array}{c}
\varepsilon_{1} \\
\vdots \\
\varepsilon_{n}
\end{array}\right]
$$

Minkowski sum of point and line segments

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
x_{0} \\
y_{0}
\end{array}\right]+\left[\begin{array}{l}
x_{1} \\
y_{1}
\end{array}\right] \varepsilon_{1}+\cdots+\left[\begin{array}{l}
x_{n} \\
y_{n}
\end{array}\right] \varepsilon_{n}
$$

Geometry of affine forms

Affine forms that share noise symbols are not independent:

$$
\begin{aligned}
\hat{x} & =x_{0}+x_{1} \varepsilon_{1}+\cdots+x_{n} \varepsilon_{n} \\
\hat{y} & =y_{0}+y_{1} \varepsilon_{1}+\cdots+y_{n} \varepsilon_{n}
\end{aligned}
$$

Joint range is a zonotope: centrally symmetric convex polygon Image of hypercube $[-1,1]^{n}$ under affine transformation

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
x_{0} \\
y_{0}
\end{array}\right]+\left[\begin{array}{lll}
x_{1} & \cdots & x_{n} \\
y_{1} & \cdots & y_{n}
\end{array}\right]\left[\begin{array}{c}
\varepsilon_{1} \\
\vdots \\
\varepsilon_{n}
\end{array}\right]
$$

Minkowski sum of point and line segments

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
x_{0} \\
y_{0}
\end{array}\right]+\left[\begin{array}{l}
x_{1} \\
y_{1}
\end{array}\right] \varepsilon_{1}+\cdots+\left[\begin{array}{l}
x_{n} \\
y_{n}
\end{array}\right] \varepsilon_{n}
$$

Approximating parametric curves

Parametric curve

$$
\mathcal{C}=\gamma(I), \quad \gamma: I \rightarrow \mathbf{R}^{2}
$$

Compute good bounding rectangle for

$$
\mathcal{P}=\gamma(T), \quad T \subseteq I
$$

Approximating parametric curves

Parametric curve

$$
\mathcal{C}=\gamma(I), \quad \gamma: I \rightarrow \mathbf{R}^{2}
$$

Compute good bounding rectangle for

$$
\mathcal{P}=\gamma(T), \quad T \subseteq I
$$

Approximating parametric curves

Parametric curve

$$
\mathcal{C}=\gamma(I), \quad \gamma: I \rightarrow \mathbf{R}^{2}
$$

Compute good bounding rectangle for

$$
\mathcal{P}=\gamma(T), \quad T \subseteq I
$$

Approximating parametric curves

Parametric curve

$$
\mathcal{C}=\gamma(I), \quad \gamma: I \rightarrow \mathbf{R}^{2}
$$

Compute good bounding rectangle for

$$
\mathcal{P}=\gamma(T), \quad T \subseteq I
$$

Write

$$
\gamma(t)=(x(t), y(t))
$$

Find joint range of $\hat{x}(\hat{t})$ and $\hat{y}(\hat{t})$ with AA

Approximating parametric curves

Parametric curve

$$
\mathcal{C}=\gamma(I), \quad \gamma: I \rightarrow \mathbf{R}^{2}
$$

Compute good bounding rectangle for

$$
\mathcal{P}=\gamma(T), \quad T \subseteq I
$$

Write

$$
\gamma(t)=(x(t), y(t))
$$

Find joint range of $\hat{x}(\hat{t})$ and $\hat{y}(\hat{t})$ with AA
Use bounding rectangle of zonotope

Approximating parametric curves

Figueiredo-Stolfi-Velho (2003)

Approximating parametric curves
Figueiredo-Stolfi-Velho (2003)

Approximating parametric curves
Figueiredo-Stolfi-Velho (2003)

Approximating parametric curves

Distance fields for parametric curves

Ray casting implicit surfaces

Implicit surface

$$
h(x, y, z)=0, \quad h: \mathbf{R}^{3} \rightarrow \mathbf{R}
$$

Ray

$$
r(t)=e+t \cdot v=(x(t), y(t), z(t)), \quad t \in[0, \infty)
$$

Ray intersects surface when

$$
f(t)=h(r(t))=0
$$

First intersection occurs at smallest zero of f in $[0, \infty)$

Ray casting implicit surfaces

```
procedure interval-bisection([a,b])
    if 0}\inF([a,b])\mathrm{ then
        c\leftarrow(a+b)/2
        if }(b-a)<\varepsilon\mathrm{ then
            return c
        else
            interval-bisection([a,c]) \leftarrow try left half first!
            interval-bisection([c,b])
        end
    end
end
```

Call interval-bisection $\left(\left[0, t_{\infty}\right]\right)$ to find the first zero

Ray casting implicit surfaces

AA exploits linear correlations in

$$
\begin{aligned}
& f(t)=h(r(t)) \\
& r(t)=(x(t), y(t), z(t))
\end{aligned}
$$

Ray casting implicit surfaces

Ray casting implicit surfaces
root must lie in smaller interval quadratic convergence

$$
\begin{aligned}
& f(t)=h(r(t)) \\
& r(t)=(x(t), y(t), z(t))
\end{aligned}
$$

Natural domains

$$
(\hat{x}, \hat{y})=\left(x_{0}, y_{0}\right)+v_{1} \varepsilon_{1}+v_{2} \varepsilon_{2}
$$

AA on triangles

$$
(\hat{x}, \hat{y})=\left(x_{0}, y_{0}\right)+v_{1} \varepsilon_{1}+v_{2} \varepsilon_{2}
$$

AA on triangles

$$
(\hat{x}, \hat{y})=\left(x_{0}, y_{0}\right)+v_{1} \varepsilon_{1}+v_{2} \varepsilon_{2}
$$

AA on triangles

$$
(\hat{x}, \hat{y})=\left(x_{0}, y_{0}\right)+v_{1} \varepsilon_{1}+v_{2} \varepsilon_{2}
$$

AA on triangles

$$
(\hat{x}, \hat{y})=\left(x_{0}, y_{0}\right)+v_{1} \varepsilon_{1}+v_{2} \varepsilon_{2}
$$

AA on triangles

$(\hat{x}, \hat{y})=\left(x_{0}, y_{0}\right)+v_{1} \varepsilon_{1}+v_{2} \varepsilon_{2}$

Implicit curves on triangles

Implicit curves on triangulations

Implicit curves on triangulations

Implicit curves on triangulations

Conclusion

Interval methods

- can reliably probe the global behavior of functions without sampling
- lead naturally to robust adaptive algorithms
- useful in many domains

Affine arithmetic is a useful tool for interval methods

- AA can replace IA transparently
- AA more accurate than IA
- AA locally more expensive than IA but globally more efficient
- AA provides geometric information that can be exploited
- AA can be used on triangles

Conclusion

Interval methods

- can reliably probe the global behavior of functions without sampling
- lead naturally to robust adaptive algorithms
- useful in many domains

Affine arithmetic is a useful tool for interval methods

- AA can replace IA transparently
- AA more accurate than IA
- AA locally more expensive than IA but globally more efficient
- AA provides geometric information that can be exploited
- AA can be used on triangles

Lots more to be done!

SIBGRAPI ${ }^{1}$

Interval methods

for computer graphics and geometric modeling

Luiz Henrique de Figueiredo
impa

