Approximating Parametric Curves with Strip Trees using Affine Arithmetic

Luiz Henrique de Figueiredo (IMPA)

Jorge Stolfi (UNICAMP)

Luiz Velho (IMPA)

Strip trees

- Multi-resolution representation for polygonal curves (Ballard, 1981)
 - tree of rectangles enclosing pieces of the curve
- Many applications:
 - display at given resolution
 - curve intersection
 - approximate length computation
 - testing point proximity
 - testing point location
- We shall extend strip trees to general parametric curves

A strip tree

Strip trees for polygonal curves

- Start with whole curve $C = p_1 \dots p_n$
- Find bounding rectangle
- ullet Choose splitting point p_k
- Recursively build strip trees for two halves $p_1 \dots p_k$ and $p_k \dots p_n$.

Strip trees for parametric curves

- Parametric curve $C = \gamma(I)$ given by $\gamma: I \subseteq \mathbf{R} \to \mathbf{R}^2$
- Strip tree for C is the result of strip-tree(I)

```
\begin{array}{l} \operatorname{strip-tree}(T) \colon \\ B \leftarrow \operatorname{bounding\ rectangle\ for\ } \mathcal{P} = \gamma(T) \\ \operatorname{if\ leaf}(T,B) \operatorname{\ then\ } \\ \operatorname{\ return\ } \langle T,B,\operatorname{nil},\operatorname{nil} \rangle \\ \operatorname{\ else\ } \\ \operatorname{\ split\ } T \operatorname{\ into\ } T_1 \operatorname{\ and\ } T_2 \\ \operatorname{\ return\ } \langle T,B,\operatorname{\ strip-tree}(T_1),\operatorname{\ strip-tree}(T_2) \rangle \end{array}
```

- Crucial steps:
 - bounding rectangle: use affine arithmetic to avoid heuristics
 - \diamond split T at midpoint
 - stop recursion with application-dependent predicate (leaf)

Affine arithmetic

- Tool for validated numerics introduced in SIBGRAPI'93
- Used in robust solution of several graphics problems as a replacement for interval arithmetic
- Represents a quantity x with an affine form

$$\hat{x} = x_0 + x_1 \,\varepsilon_1 + \dots + x_n \,\varepsilon_n$$

Noise symbols $\varepsilon_i \in \mathbf{U} = [-1, +1]$, independent but otherwise unknown

- We can compute arbitrary formulas on affine forms
- Key feature: ability to handle correlations

Geometry of affine arithmetic

Affine forms that share noise symbols are not independent:

$$\hat{x} = x_0 + x_1 \varepsilon_1 + \dots + x_n \varepsilon_n$$

 $\hat{y} = y_0 + y_1 \varepsilon_1 + \dots + y_n \varepsilon_n$

The region containing (x, y) is

$$Z = \{(x, y) : \varepsilon_i \in \mathbf{U}\}$$

Z is the image of \mathbf{U}^n under an affine map $\mathbf{R}^n \to \mathbf{R}^2$ and so Z is a centrally symmetric convex polygon, a *zonotope*.

Geometry of affine arithmetic

Affine forms that share noise symbols are not independent:

$$\hat{x} = x_0 + x_1 \varepsilon_1 + \dots + x_n \varepsilon_n$$

$$\hat{y} = y_0 + y_1 \varepsilon_1 + \dots + y_n \varepsilon_n$$

The region containing (x, y) is

$$Z = \{(x, y) : \varepsilon_i \in \mathbf{U}\}$$

Z is the image of \mathbf{U}^n under an affine map $\mathbf{R}^n \to \mathbf{R}^2$ and so Z is a centrally symmetric convex polygon, a *zonotope*.

The region would be a rectangle if x and y were independent.

Given a parametric curve $C = \gamma(I)$, where $\gamma: I \to \mathbf{R}^2$ and $T \subseteq I$, compute a bounding rectangle for $P = \gamma(T)$.

Given a parametric curve $C = \gamma(I)$, where $\gamma: I \to \mathbf{R}^2$ and $T \subseteq I$, compute a bounding rectangle for $P = \gamma(T)$.

Given a parametric curve $C = \gamma(I)$, where $\gamma: I \to \mathbf{R}^2$ and $T \subseteq I$, compute a bounding rectangle for $P = \gamma(T)$.

Given a parametric curve $C = \gamma(I)$, where $\gamma: I \to \mathbf{R}^2$ and $T \subseteq I$, compute a bounding rectangle for $P = \gamma(T)$.

Solution with AA:

- Write $\gamma(t) = (x(t), y(t))$.
- Represent $t \in T$ with an affine form:

$$\hat{t} = t_0 + t_1 \varepsilon_1, \quad t_0 = (b+a)/2, \quad t_1 = (b-a)/2$$

• Compute coordinate functions x and y at \hat{t} using AA:

$$\widehat{x} = x_0 + x_1 \varepsilon_1 + \dots + x_n \varepsilon_n$$

$$\widehat{y} = y_0 + y_1 \varepsilon_1 + \dots + y_n \varepsilon_n$$

• Use bounding rectangle of the xy zonotope.

Approximating parametric curves (example)

• C = line segment given by $\gamma(t) = (1,1) + t(4,6)$, for $t \in [0,1]$

$$\hat{t} = 0.5 + 0.5 \,\varepsilon_1$$

 $\hat{x} = 1 + 4 \,\hat{t} = 3 + 2 \,\varepsilon_1$
 $\hat{y} = 1 + 6 \,\hat{t} = 4 + 3 \,\varepsilon_1$

Separately: $(x, y) \in [1, 5] \times [1, 7]$

Jointly: (x, y) is exactly on the line segment

Approximating parametric curves (example)

• C = parabolic segment given by $\gamma(t) = (t^2, t)$, for $t \in [0, 2]$

$$\hat{x} = \hat{t}^2 = 1.5 + 2\varepsilon_1 + 0.5\varepsilon_2$$

$$\hat{y} = \hat{t} = 1 + 1\varepsilon_1$$

Separately: $(x, y) \in = [-1, 4] \times [0, 2]$

Jointly: (x, y) is in parallelogram

Examples of strip-tree approximations

Circle Spiral Butterfly

Distance field for butterfly

Offsets for butterfly

Distance field for limaçon

Offsets for limaçon

Conclusion

- Strip trees for general parametric curves
 - non-aligned bounding rectangles from zonotopes given by affine arithmetic
- Implicit approximation of parametric curves via distance fields
- Future work: Surfaces
 - o non-aligned rectangular boxes from 3D zonotopes (how?)
 - domain decomposition (how?)
 - 4-8 meshes seem to be convenient for affine arithmetic